En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

The rational motivic sphere spectrum and motivic Serre finiteness

Sélection Signaler une erreur
Multi angle
Auteurs : Levine, Marc (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : After inverting 2, the motivic sphere spectrum splits into a plus part and a minus part with respect to a certain natural involution. Cisinsky and Déglise have shown that, with rational coefficients, the plus part is given by rational motivic cohomlogy. With Ananyevskiy and Panin, we have computed the minus part with rational coefficients as being given by rational Witt-theory. In particular, this shows that the rational bi-graded homotopy sheaves of the minus sphere are concentrated in bi-degree (n,n). This may be rephrased as saying that the graded homotopy sheaves of the minus sphere in strictly positive topological degree are torsion. Combined with the result of Cisinski-Déglise mentioned above, this shows that the graded homotopy sheaves of the sphere spectrum in strictly positive topological degree and non-negative Tate degree are torsion, an analog of the classical theorem of Serre, that the stable homotopy groups of spheres in strictly positive degree are finite.

Codes MSC :
14C25 - Algebraic cycles
14F42 - Motivic cohomology; motivic homotopy theory

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 29/09/2015
    Date de Captation : 02/09/2015
    Sous Collection : Research talks
    Catégorie arXiv : Algebraic Geometry ; Algebraic Topology
    Domaine(s) : Géométrie Complexe & géométrie Algébrique ; Topologie
    Format : MP4 (.mp4) - HD
    Durée : 01:06:48
    Audience : Chercheurs
    Download : https://videos.cirm-math.fr/2015-09-02_Levine.mp4

Informations sur la Rencontre

Nom de la Rencontre : Cohomological Methods in the Theory of Algebraic Groups
Organisateurs de la Rencontre : Calmes, Baptiste ; Chernousov, Vladimir ; Karpenko, Nikita
Dates : 31/08/2015 - 04/09/2015
Année de la rencontre : 2015
URL de la Rencontre : http://conferences.cirm-math.fr/1001.html

Données de citation

DOI : 10.24350/CIRM.V.18825103
Citer cette vidéo: Levine, Marc (2015). The rational motivic sphere spectrum and motivic Serre finiteness. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18825103
URI : http://dx.doi.org/10.24350/CIRM.V.18825103

Voir Aussi

Bibliographie



Sélection Signaler une erreur