En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

A new stability and convergence proof of the Fourier-Galerkin spectral method for the spatially homogeneous Boltzmann equation

Sélection Signaler une erreur
Virtualconference
Auteurs : Hu, Jingwei (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : Numerical approximation of the Boltzmann equation is a challenging problem due to its high-dimensional, nonlocal, and nonlinear collision integral. Over the past decade, the Fourier-Galerkin spectral method has become a popular deterministic method for solving the Boltzmann equation, manifested by its high accuracy and potential of being further accelerated by the fast Fourier transform. Albeit its practical success, the stability of the method is only recently proved by Filbet, F. & Mouhot, C. in [Trans.Amer.Math.Soc. 363, no. 4 (2011): 1947-1980.] by utilizing the”spreading” property of the collision operator. In this work, we provide anew proof based on a careful L2 estimate of the negative part of the solution. We also discuss the applicability of the result to various initial data, including both continuous and discontinuous functions. This is joint work with Kunlun Qi and Tong Yang.

Mots-Clés : Boltzmann equation; Fourier-Galerkin spectral method; well-posedness; stability; convergence; discontinuous; filter

Codes MSC :
35Q20 - Boltzmann equations
45G10 - Other nonlinear integral equations
65M12 - Stability and convergence of numerical methods (IVP of PDE)
65M70 - Spectral, collocation and related methods

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2355/Slides/slide_Jingwei_HU.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 09/04/2021
    Date de Captation : 22/03/2021
    Sous Collection : Research talks
    Catégorie arXiv : Analysis of PDEs ; Numerical Analysis ; Mathematical Physics
    Domaine(s) : Analyse Numérique & Calcul Formel ; EDP
    Format : MP4 (.mp4) - HD
    Durée : 00:42:38
    Audience : Chercheurs
    Download : https://videos.cirm-math.fr/2021-03-22_Hu.mp4

Informations sur la Rencontre

Nom de la Rencontre : Jean Morlet Chair 2021- Conference: Kinetic Equations: From Modeling Computation to Analysis / Chaire Jean-Morlet 2021 - Conférence : Equations cinétiques : Modélisation, Simulation et Analyse
Organisateurs de la Rencontre : Bostan, Mihaï ; Jin, Shi ; Mehrenberger, Michel ; Montibeller, Celine
Dates : 22/03/2021 - 26/03/2021
Année de la rencontre : 2021
URL de la Rencontre : https://www.chairejeanmorlet.com/2355.html

Données de citation

DOI : 10.24350/CIRM.V.19734303
Citer cette vidéo: Hu, Jingwei (2021). A new stability and convergence proof of the Fourier-Galerkin spectral method for the spatially homogeneous Boltzmann equation. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19734303
URI : http://dx.doi.org/10.24350/CIRM.V.19734303

Voir Aussi

Bibliographie

  • FILBET, Francis et MOUHOT, Clément. Analysis of spectral methods for the homogeneous Boltzmann equation. Transactions of the american mathematical society, 2011, vol. 363, no 4, p. 1947-1980. - http://dx.doi.org/10.1090/S0002-9947-2010-05303-6

  • HU, Jingwei, QI, Kunlun, et YANG, Tong. A New Stability and Convergence Proof of the Fourier--Galerkin Spectral Method for the Spatially Homogeneous Boltzmann Equation. SIAM Journal on Numerical Analysis, 2021, vol. 59, no 2, p. 613-633. - https://doi.org/10.1137/20M1351813



Sélection Signaler une erreur