Auteurs : Zhuk, Dmitriy (Auteur de la conférence)
CIRM (Editeur )
Résumé :
The Quantified Constraint Satisfaction Problem (QCSP) is the generalization of the Constraint Satisfaction problem (CSP) where we are allowed to use both existential and universal quantifiers. Formally, the QCSP over a constraint language $\Gamma$ is the problem to evaluate a sentence of the form$$\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \ldots \forall x_{n} \exists y_{n}\left(R_{1}(\ldots) \wedge \ldots \wedge R_{s}(\ldots)\right),$$where $R_{1}, \ldots, R_{s}$ are relations from $\Gamma$. While CSP remains in NP for any $\Gamma, \operatorname{QCSP}(\Gamma)$ can be PSpace-hard, as witnessed by Quantified 3-Satisfiability or Quantified Graph 3Colouring. For many years there was a hope that for any constraint language the QCSP is either in P, NP-complete, or PSpace-complete. Moreover, a very simple conjecture describing the complexity of the QCSP was suggested by Hubie Chen. However, in 2018 together with Mirek Ol_ák and Barnaby Martin we discovered constraint languages for which the QCSP is coNP-complete, DP-complete, and even $\Theta_{2}^{P}$-complete, which refutes the Chen conjecture. Despite the fact that we described the complexity for each constraint language on a 3 -element domain with constants, we did not hope to obtain a complete classification.
This year I obtained several results that make me believe that such a classification is closer than it seems. First, I obtained an elementary proof of the PGP reduction, which allows to reduce the QCSP to the CSP. Second, I showed that there is a gap between $\Pi_{2}^{P}$ and PSpace, and found a criterion for the QCSP to be PSpace-hard. In the talk I will discuss the above and some other results.
Mots-Clés : Quantified CSP; constraint statisfaction problem; computational complexity
Codes MSC :
03B70
- Logic of programming, See also {68Q55, 68Q60}
03D15
- Complexity of computation, See also {68Q15}
08A70
- Applications of universal algebra in computer science
Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2398/Slides/Zhuk.pdf
|
Informations sur la Rencontre
Nom de la Rencontre : 19th International Conference on Relational and Algebraic Methods in Computer Science / 19ème Conférence internationale de méthodes relationnelles et algébriques en informatique Organisateurs de la Rencontre : Fahrenberg, Uli ; Gehrke, Mai ; Santocanale, Luigi ; Winter, Michael Dates : 02/11/2021 - 06/11/2021
Année de la rencontre : 2021
URL de la Rencontre : https://conferences.cirm-math.fr/2398.html
DOI : 10.24350/CIRM.V.19828803
Citer cette vidéo:
Zhuk, Dmitriy (2021). Quantified constraint satisfaction problem: towards the classification of complexity. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19828803
URI : http://dx.doi.org/10.24350/CIRM.V.19828803
|
Voir Aussi
Bibliographie
- ZHUK, Dmitriy et MARTIN, Barnaby. QCSP monsters and the demise of the Chen Conjecture. In : Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing. 2020. p. 91-104. - https://doi.org/10.1145/3357713.3384232
- ZHUK, Dmitriy. The complexity of the Quantified CSP having the polynomially generated powers property. arXiv preprint arXiv:2110.09504, 2021. - https://arxiv.org/abs/2110.09504
- ZHUK, Dmitriy et MARTIN, Barnaby. The complete classification for quantified equality constraints. arXiv preprint arXiv:2104.00406, 2021. - https://arxiv.org/abs/2104.00406