En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

gerer mes paniers

  • z

    Destination de la recherche

    Raccourcis

    1

    Vanishing of twisted L-functions of elliptic curves over function fields

    Sélection Signaler une erreur
    Multi angle
    Auteurs : Lalin, Matilde (Auteur de la Conférence)
    CIRM (Editeur )

    00:00
    00:00
     

    Résumé : Let E be an elliptic curve over the rationals, and let χ be a Dirichlet character of order for some odd prime . Heuristics based on the distribution of modular symbols and random matrix theory have led to conjectures predicting that the vanishing of the twisted L-functions L(E,χ,s) at s=1 is a very rare event (David-Fearnley-Kisilevsky and Mazur-Rubin). In particular, it is conjectured that there are only finitely many characters of order >5 such that L(E,χ,1)=0 for a fixed curve E.
    We investigate the case of elliptic curves over function fields. For Dirichlet L-functions over function fields, Li and Donepudi-Li have shown how to use the geometry to produce infinitely many characters of order l2 such that the Dirichlet L-function L(χ,s) vanishes at s=1/2, contradicting (the function field analogue of) Chowla's conjecture. We show that their work can be generalized to constant curves E/Fq(t), and we show that if there is one Dirichlet character χ of order such that L(E,χ,1)=0, then there are infinitely many, leading to some specific examples contradicting (the function field analogue of) the number field conjectures on the vanishing of twisted L-functions. Such a dichotomy does not seem to exist for general curves over Fq(t), and we produce empirical evidence which suggests that the conjectures over number fields also hold over function fields for non-constant E/Fq(t).

    Keywords : non-vanishing of L-functions; twisted L-functions of elliptic curves; function fields; elliptic curve ranks in extensions

    Codes MSC :
    11G05 - Elliptic curves over global fields
    11G40 - L-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
    14H25 - Arithmetic ground fields, See also {11Dxx,11G05,14Gxx}

      Informations sur la Vidéo

      Réalisateur : Petit, Jean
      Langue : Anglais
      Date de publication : 30/05/2023
      Date de captation : 15/05/2023
      Sous collection : Research talks
      arXiv category : Number Theory
      Domaine : Number Theory
      Format : MP4 (.mp4) - HD
      Durée : 00:45:40
      Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
      Download : https://videos.cirm-math.fr/2023-05-15_Lalin.mp4

    Informations sur la Rencontre

    Nom de la rencontre : Jean-Morlet Chair - Conference - Arithmetic Statistics / Chaire Jean-Morlet - Conférence - Statistiques arithmétiques
    Organisateurs de la rencontre : Anni, Samuele ; Lorenzo Garcia, Elisa ; Stevenhagen, Peter ; Vonk, Jan
    Dates : 15/05/2023 - 19/05/2023
    Année de la rencontre : 2023
    URL Congrès : https://conferences.cirm-math.fr/2675.html

    Données de citation

    DOI : 10.24350/CIRM.V.20045803
    Citer cette vidéo: Lalin, Matilde (2023). Vanishing of twisted L-functions of elliptic curves over function fields. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20045803
    URI : http://dx.doi.org/10.24350/CIRM.V.20045803

    Voir aussi

    Bibliographie

    • COMEAU-LAPOINTE, Antoine, DAVID, Chantal, LALIN, Matilde, et al. On the vanishing of twisted L-functions of elliptic curves over rational function fields. Research in Number Theory, 2022, vol. 8, no 4, p. 76. - https://doi.org/10.48550/arXiv.2207.00197

    • DAVID, Chantal, FEARNLEY, Jack, et KISILEVSKY, Hershy. On the vanishing of twisted L-functions of elliptic curves. Experimental Mathematics, 2004, vol. 13, no 2, p. 185-198. - https://doi.org/10.1080/10586458.2004.10504532

    • DAVID, Chantal, FEARNLEY, Jack, et KISILEVSKY, Hershy. Vanishing of L-functions of elliptic curves over number fields. Ranks of elliptic curves and random matrix theory, 2007, no 341, p. 247. -

    • DONEPUDI, Ravi et LI, Wanlin. Vanishing of Dirichlet L-functions at the central point over function fields. Rocky Mountain Journal of Mathematics, 2021, vol. 51, no 5, p. 1615-1628. - http://dx.doi.org/10.1216/rmj.2021.51.1615

    • FEARNLEY, Jack, KISILEVSKY, Hershy, et KUWATA, Masato. Vanishing and non‐vanishing Dirichlet twists of L‐functions of elliptic curves. Journal of the London Mathematical Society, 2012, vol. 86, no 2, p. 539-557. - https://doi.org/10.1112/jlms/jds018

    • GOUVÊA, Fernando et MAZUR, Barry. The square-free sieve and the rank of elliptic curves. Journal of the American Mathematical Society, 1991, vol. 4, no 1, p. 1-23. - http://www.jstor.org/stable/2939253

    • LI, Wanlin. Vanishing of hyperelliptic L-functions at the central point. Journal of Number Theory, 2018, vol. 191, p. 85-103. - https://doi.org/10.1016/j.jnt.2018.03.018

    • MAZUR, Barry, RUBIN, Karl, et LARSEN, Michael. Diophantine stability. American Journal of Mathematics, 2018, vol. 140, no 3, p. 571-616. - https://doi.org/10.1353/ajm.2018.0014

    • MAZUR, Barry et RUBIN, Karl. Arithmetic conjectures suggested by the statistical behavior of modular symbols. Experimental Mathematics, 2021, p. 1-16. - https://doi.org/10.1080/10586458.2021.1982424

    • POONEN Bjorn. Squarefree values of multivariable polynomials.Duke Math. J., 2023, 118 (2) p.353 - 373 - https://doi.org/10.1215/S0012-7094-03-11826-8



    Imagette Video

    Sélection Signaler une erreur
    Close