En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 05C20 2 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

The partially disjoint paths problem - Schrijver, Alexander (Author of the conference) | CIRM H

Post-edited

The partially disjoint paths problem asks for paths $P_1, \ldots,P_k$ between given pairs of terminals, while certain pairs of paths $P_i$,$P_j$ are required to be disjoint. With the help of combinatorial group theory, we show that, for fixed $k$, this problem can be solved in polynomial time for planar directed graphs. We also discuss related problems. No specific foreknowledge is required.

05C10 ; 05C20 ; 05C25 ; 05C38 ; 68Q25 ; 90C27

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Dans cet exposé, je présente une approche d'énumération asymptotique du type guess-and-check pour certaines récurrences, à travers de l'étude des arbres binaires compactés. Un arbre binaire compacté est un graphe acyclique dirigé qui encode un arbre binaire, où on garde une seule copie pour les sous-arbres identiques. Nous prouvons que le nombre des arbres binaires compactés de taille n est asymptotiquement $\Theta\left(n ! 4^n \exp \left(3 a_1 n^{1 / 3}\right) n^{3 / 4}\right)$, avec $a_1 \sim-2.338$ la plus grande racine de la fonction d'Airy. Typiquement, cette expression asymptotique contient un exponentiel étiré, qui est rare et intéressant dans l'énumération asymptotique. Pour arriver à ce résultat, nous postulons d'abord une récurrence à deux paramètres pour ces nombres, puis nous devinons la forme de l'asymptotique et la démontrons toujours à travers de la récurrence. Je présenterai aussi quelques autres applications, et notre effort à généraliser cette méthode.
Travail commun avec Andrew Elvey Price et Michael Wallner.
https://igm.univ-mlv.fr/~wfang/[-]
Dans cet exposé, je présente une approche d'énumération asymptotique du type guess-and-check pour certaines récurrences, à travers de l'étude des arbres binaires compactés. Un arbre binaire compacté est un graphe acyclique dirigé qui encode un arbre binaire, où on garde une seule copie pour les sous-arbres identiques. Nous prouvons que le nombre des arbres binaires compactés de taille n est asymptotiquement $\Theta\left(n ! 4^n \exp \left(3 a_1 ...[+]

05C30 ; 05A16 ; 05C20 ; 05C05

Bookmarks Report an error