En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 47D08 2 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

$L^p$-theory for Schrödinger systems - Rhandi, Abdelaziz (Author of the conference) | CIRM H

Multi angle

In this talk we study for $p\in \left ( 1,\infty \right )$ the $L^{p}$-realization of the vector-valued Schrödinger operator $\mathcal{L}u:= div\left ( Q\triangledown u \right )+Vu$. Using a noncommutative version of the Dore–Venni theorem due to Monniaux and Prüss, and a perturbation theorem by Okazawa, we prove that $L^{p}$, the $L^{p}$-realization of $\mathcal{L}$, defined on the intersection of the natural domains of the differential and multiplication operators which form $\mathcal{L}$, generates a strongly continuous contraction semigroup on $L^{p}\left ( \mathbb{R}^{d} ;\mathbb{C}^{m}\right )$. We also study additional properties of the semigroup such as positivity, ultracontractivity, Gaussian estimates and compactness of the resolvent. We end the talk by giving some generalizations obtained recently and several examples.[-]
In this talk we study for $p\in \left ( 1,\infty \right )$ the $L^{p}$-realization of the vector-valued Schrödinger operator $\mathcal{L}u:= div\left ( Q\triangledown u \right )+Vu$. Using a noncommutative version of the Dore–Venni theorem due to Monniaux and Prüss, and a perturbation theorem by Okazawa, we prove that $L^{p}$, the $L^{p}$-realization of $\mathcal{L}$, defined on the intersection of the natural domains of the differential and ...[+]

35J47 ; 47D06 ; 35J15 ; 47D08

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Conformal bootstrap in Liouville theory - Vargas, Vincent (Author of the conference) | CIRM H

Multi angle

Liouville conformal field theory (LCFT) was introduced by Polyakov in 1981 as an essential ingredient in his path integral construction of string theory. Since then Liouville theory has appeared in a wide variety of contexts ranging from random conformal geometry to 4d Yang-Mills theory with supersymmetry.
Recently, a probabilistic construction of LCFT on general Riemann surfaces was provided using the 2d Gaussian Free Field. This construction can be seen as a rigorous construction of the 2d path integral introduced in Polyakov's 1981 work. In contrast to this construction, modern conformal field theory is based on representation theory and the so-called bootstrap procedure (based on recursive techniques) introduced in 1984 by Belavin-Polyakov-Zamolodchikov. In particular, a bootstrap construction for LCFT has been proposed in the mid 90's by Dorn-Otto-Zamolodchikov-Zamolodchikov (DOZZ) on the sphere. The aim of this talk is to review a recent series of work which shows the equivalence between the probabilistic construction and the bootstrap construction of LCFT on general Riemann surfaces. In particular, the equivalence is based on showing that LCFT satisfies a set of natural geometric axioms known as Segal's axioms.
Based on joint works with F. David, C. Guillarmou, A. Kupiainen, R. Rhodes.[-]
Liouville conformal field theory (LCFT) was introduced by Polyakov in 1981 as an essential ingredient in his path integral construction of string theory. Since then Liouville theory has appeared in a wide variety of contexts ranging from random conformal geometry to 4d Yang-Mills theory with supersymmetry.
Recently, a probabilistic construction of LCFT on general Riemann surfaces was provided using the 2d Gaussian Free Field. This construction ...[+]

60D99 ; 81T40 ; 47D08 ; 37K15 ; 81U20 ; 17B68

Bookmarks Report an error