En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 52B20 3 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Posets, polynômes, et polytopes - Partie 1 - Knauer, Kolja (Author of the conference) | CIRM H

Multi angle

Les posets (ensembles partiellement ordonnés) sont des structures utiles pour la modélisation de divers problèmes (scheduling, sous-groupes d'un groupe), mais ils sont aussi la base d'une théorie combinatoire très riche. Nous discuterons des paramètres de posets comme la largeur, la dimension et les partitions en chaînes. À partir de là on fera un lien avec les polynômes en introduisant et étudiant le polynôme d'ordre — un polynôme associé à tout poset. Nous développerons ensuite un lien avec les polytopes (objets de la géométrie discrète). Un sous-ensemble de $\mathbb{R}^n$ est un polytope s'il peut être écrit comme le plus petit convexe contenant un ensemble de points V fini donné. Nous discuterons des polytopes entiers (c'est à dire $V\subset\mathbb{Z}^n$) et le polynôme d'Ehrhart qui est un polynôme associé à tout polytope entier. Le polytope d'ordre est un polytope associé à un poset. Nous montrerons que le polynôme d'Ehrhart du polytope d'ordre P est le polynôme d'ordre de P.[-]
Les posets (ensembles partiellement ordonnés) sont des structures utiles pour la modélisation de divers problèmes (scheduling, sous-groupes d'un groupe), mais ils sont aussi la base d'une théorie combinatoire très riche. Nous discuterons des paramètres de posets comme la largeur, la dimension et les partitions en chaînes. À partir de là on fera un lien avec les polynômes en introduisant et étudiant le polynôme d'ordre — un polynôme associé à ...[+]

06A07 ; 52B20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Let $K$ be a discretely valued field with ring of integers $R$ and let $d$ be a positive integer. Then the rank $d$ free $R$-submodules of $K^{d}$ (called $R$-lattices) are the $0$-simplices of an infinite simplicial complex called a Bruhat-Tits building. If $O$ is an order in the ring of $d\times d$ matrices over $K$, then the collection of lattices that are also $O$-modules (called $O$-lattices) is a non-empty, bounded and convex subset of the building. Determining what these subsets are is in general a difficult question.
I will report on joint work with Yassine El Maazouz, Gabriele Nebe, Marvin Hahn, and Bernd Sturmfels describing the geometric features of the set of $O$-lattices for some particular orders. If time permits, I will also define spherical codes in Bruhat-Tits buildings and show how these fit in this framework and how they give rise to codes of submodules over chain rings.[-]
Let $K$ be a discretely valued field with ring of integers $R$ and let $d$ be a positive integer. Then the rank $d$ free $R$-submodules of $K^{d}$ (called $R$-lattices) are the $0$-simplices of an infinite simplicial complex called a Bruhat-Tits building. If $O$ is an order in the ring of $d\times d$ matrices over $K$, then the collection of lattices that are also $O$-modules (called $O$-lattices) is a non-empty, bounded and convex subset of ...[+]

11S45 ; 16G30 ; 52B20 ; 20E42 ; 51E24

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Posets, polynômes, et polytopes - Partie 2 - Knauer, Kolja (Author of the conference) | CIRM H

Multi angle

Les posets (ensembles partiellement ordonnés) sont des structures utiles pour la modélisation de divers problèmes (scheduling, sous-groupes d'un groupe), mais ils sont aussi la base d'une théorie combinatoire très riche. Nous discuterons des paramètres de posets comme la largeur, la dimension et les partitions en chaînes. À partir de là on fera un lien avec les polynômes en introduisant et étudiant le polynôme d'ordre — un polynôme associé à tout poset. Nous développerons ensuite un lien avec les polytopes (objets de la géométrie discrète). Un sous-ensemble de $\mathbb{R}^n$ est un polytope s'il peut être écrit comme le plus petit convexe contenant un ensemble de points V fini donné. Nous discuterons des polytopes entiers (c'est à dire $V\subset\mathbb{Z}^n$) et le polynôme d'Ehrhart qui est un polynôme associé à tout polytope entier. Le polytope d'ordre est un polytope associé à un poset. Nous montrerons que le polynôme d'Ehrhart du polytope d'ordre P est le polynôme d'ordre de P.[-]
Les posets (ensembles partiellement ordonnés) sont des structures utiles pour la modélisation de divers problèmes (scheduling, sous-groupes d'un groupe), mais ils sont aussi la base d'une théorie combinatoire très riche. Nous discuterons des paramètres de posets comme la largeur, la dimension et les partitions en chaînes. À partir de là on fera un lien avec les polynômes en introduisant et étudiant le polynôme d'ordre — un polynôme associé à ...[+]

06A07 ; 52B20

Bookmarks Report an error