En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 58B34 4 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The quantisation of the spectral action for spectral triples remains a largely open problem. Even within a perturbative framework, serious challenges arise when in the presence of non-abelian gauge symmetries. This is precisely where the Batalin–Vilkovisky (BV) formalism comes into play: a powerful tool specifically designed to handle the perturbative quantisation of gauge theories. The central question I will address is whether it is possible to develop a BV formalism entirely within the framework of noncommutative geometry (NCG). After a brief introduction to the key ideas behind BV quantisation, I will report on recent progress toward this goal, showing that the BV formalism can be fully formulated within the language of NCG in the case of finite spectral triples. [-]
The quantisation of the spectral action for spectral triples remains a largely open problem. Even within a perturbative framework, serious challenges arise when in the presence of non-abelian gauge symmetries. This is precisely where the Batalin–Vilkovisky (BV) formalism comes into play: a powerful tool specifically designed to handle the perturbative quantisation of gauge theories. The central question I will address is whether it is possible ...[+]

58B34 ; 81T70 ; 81T13

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Quantum gravity from non-commutative geometry - Barrett, John (Author of the conference) | CIRM H

Multi angle

The talk will discuss progress in modelling quantum spacetime using finite spectral triples. There will be a brief overview of the general ideas and some recent progress. A non-commutative model of a sphere with non-trivial spinor bundles will be presented.

58B34 ; 81R60 ; 81T75 ; 83C45

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Quanta of geometry - Connes, Alain (Author of the conference) | CIRM H

Multi angle

J'exposerai les résultats très récents obtenus en collaboration avec Chamseddine et Suijlekom sur l'unification des constantes de couplage dans l'approche de la physique par la géométrie noncommutative.

58B34 ; 81R60 ; 83C65

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On the $L^p$ Baum-Connes conjecture - Kasparov, Gennadi (Author of the conference) | CIRM H

Multi angle

The right side of the Baum-Connes conjecture is the $K$-theory of the reduced $C^*$-algebra $C^*_{red} (G)$ of the group $G$. This algebra is the completion of the algebra $L^1(G)$ in the norm of the algebra of operators acting on $L^2(G)$. If we complete the algebra $L^1(G)$ in the norm of the algebra of operators acting on $L^p(G)$ we will get the Banach algebra $C^{*,p}_{red}(G)$. The $K$-theory of this algebra serves as the right side of the $L^p$-version of the Baum-Connes conjecture. The construction of the left side and the assembly map in this case requires a little bit of techniques of asymptotic morphisms for Banach algebras. A useful category of Banach algebras for this purpose includes all algebras of operators acting on $L^p$-spaces (which may be called $L^p$-algebras).
The current joint work in progress with Guoliang Yu aims at proving the following result:
The $L^p$-version of the Baum-Connes conjecture with coefficients in any $L^p$-algebra is true for any discrete group $G$ which admits an affine-isometric, metrically proper action on the space $X = l^p(Z)$, where $Z$ is a countable discrete set, so that the linear part of this action is induced by a measure-preserving action of $G$ on $Z$.
I will discuss the techniques involved in this work.[-]
The right side of the Baum-Connes conjecture is the $K$-theory of the reduced $C^*$-algebra $C^*_{red} (G)$ of the group $G$. This algebra is the completion of the algebra $L^1(G)$ in the norm of the algebra of operators acting on $L^2(G)$. If we complete the algebra $L^1(G)$ in the norm of the algebra of operators acting on $L^p(G)$ we will get the Banach algebra $C^{*,p}_{red}(G)$. The $K$-theory of this algebra serves as the right side of the ...[+]

19K35 ; 46L80 ; 58B34

Bookmarks Report an error