En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 81Vxx 1 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We discuss joint work with Doug Arnold, Guy David, Marcel Filoche and Svitlana Mayboroda. Consider the Neumann boundary value problem for the operator $L = divA\nabla + V$ on a Lipschitz domain $\Omega$ and, more generally, on manifolds with and without boundary. The eigenfunctions of $L$ are often localized, as a result of disorder of the potential $V$, the matrix of coefficients $A$, irregularities of the boundary, or all of the above. In earlier work, Filoche and Mayboroda introduced the function $u$ solving $Lu = 1$, and showed numerically that it strongly reflects this localization. In this talk, we deepen the connection between the eigenfunctions and this landscape function $u$ by proving that its reciprocal $1/u$ acts as an effective potential. The effective potential governs the exponential decay of the eigenfunctions of the system and delivers information on the distribution of eigenvalues near the bottom of the spectrum.[-]
We discuss joint work with Doug Arnold, Guy David, Marcel Filoche and Svitlana Mayboroda. Consider the Neumann boundary value problem for the operator $L = divA\nabla + V$ on a Lipschitz domain $\Omega$ and, more generally, on manifolds with and without boundary. The eigenfunctions of $L$ are often localized, as a result of disorder of the potential $V$, the matrix of coefficients $A$, irregularities of the boundary, or all of the above. In ...[+]

47A75 ; 81Vxx ; 81Q10 ; 35P20

Bookmarks Report an error