En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 05A18 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The challenge of linear-time Boltzmann sampling - Sportiello, Andrea (Auteur de la conférence) | CIRM H

Multi angle

Let $X_{n}$ be an ensemble of combinatorial structures of size $N$, equipped with a measure. Consider the algorithmic problem of exactly sampling from this measure. When this ensemble has a ‘combinatorial specification, the celebrated Boltzmann sampling algorithm allows to solve this problem with a complexity which is, typically, of order $N(3/2)$. Here, a factor $N$ is inherent to the problem, and implied by the Shannon bound on the average number of required random bits, while the extra factor $N$.[-]
Let $X_{n}$ be an ensemble of combinatorial structures of size $N$, equipped with a measure. Consider the algorithmic problem of exactly sampling from this measure. When this ensemble has a ‘combinatorial specification, the celebrated Boltzmann sampling algorithm allows to solve this problem with a complexity which is, typically, of order $N(3/2)$. Here, a factor $N$ is inherent to the problem, and implied by the Shannon bound on the average ...[+]

05A15 ; 05A05 ; 05A18 ; 05C30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will talk about a transformation involving double monotone Hurwitz numbers, which has several interpretations: transformation from maps to fully simple maps, passing from cumulants to free cumulants in free probability, action of an operator in the Fock space, symplectic exchange in topological recursion. In combination with recent work of Bychkov, Dunin-Barkowski, Kazarian and Shadrin, we deduce functional relations relating the generating series of higher order cumulants and free cumulants. This solves a 15-year old problem posed by Collins, Mingo, Sniady and Speicher (the first order is Voiculescu R-transform). This leads us to a general theory of 'surfaced' freeness, which captures the all order asymptotic expansions in unitary invariant random matrix models, which can be described both from the combinatorial and the analytic perspective.
Based on https://arxiv.org/abs/2112.12184 with Séverin Charbonnier, Elba Garcia-Failde, Felix Leid and Sergey Shadrin.[-]
I will talk about a transformation involving double monotone Hurwitz numbers, which has several interpretations: transformation from maps to fully simple maps, passing from cumulants to free cumulants in free probability, action of an operator in the Fock space, symplectic exchange in topological recursion. In combination with recent work of Bychkov, Dunin-Barkowski, Kazarian and Shadrin, we deduce functional relations relating the generating ...[+]

46L54 ; 15B52 ; 16R60 ; 06A07 ; 05A18

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Erdös and Sárközy asked the maximum size of a subset of the first $N$ integers with no two elements adding up to a perfect square. In this talk we prove that the tight answer is $\frac{11}{32}N$ for sufficiently large $N$. We are going to prove some stability results also. This is joint work with Simao Herdade and Ayman Khalfallah.

05A18 ; 11B75

Sélection Signaler une erreur