Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Pham and Teissier showed in the late 60's that any two plane curve germs with the same outer Lipschitz geometry have equivalent embeddings into $\mathbb{C}^2$. We consider to what extent the same holds in higher dimensions, giving examples of normal surface singularities which have the same topology and outer Lipschitz geometry but whose embeddings into $\mathbb{C}^3$ are topologically inequivalent. Joint work with Anne Pichon.
Keywords: bilipschitz - Lipschitz geometry - normal surface singularity - Zariski equisingularity - Lipschitz equisingularity
[-]
Pham and Teissier showed in the late 60's that any two plane curve germs with the same outer Lipschitz geometry have equivalent embeddings into $\mathbb{C}^2$. We consider to what extent the same holds in higher dimensions, giving examples of normal surface singularities which have the same topology and outer Lipschitz geometry but whose embeddings into $\mathbb{C}^3$ are topologically inequivalent. Joint work with Anne Pichon.
Keywords: ...
[+]
14B05 ; 32S25 ; 32S05 ; 57Mxx
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The splice type singularities introduced in 2001 by Neumann and Wahl provide the largest class known so far of links of isolated complete intersection surface singularities which are integral homology spheres. These singularities are determined up to equisingularity by particular kinds of decorated trees, called splice diagrams. Neumann and Wahl formulated the so-called Milnor fiber conjecture, stating that any choice of an internal edge of a splice diagram determines a kind of four-dimensional decomposition of the Milnor fiber of the associated singularity. The aim of this course is to explain the structure of a proof of this conjecture, obtained in collaboration with Maria Angelica Cueto and Dmitry Stepanov. lt uses a combination of toric, tropical and logarithmic geometry.
[-]
The splice type singularities introduced in 2001 by Neumann and Wahl provide the largest class known so far of links of isolated complete intersection surface singularities which are integral homology spheres. These singularities are determined up to equisingularity by particular kinds of decorated trees, called splice diagrams. Neumann and Wahl formulated the so-called Milnor fiber conjecture, stating that any choice of an internal edge of a ...
[+]
32S50 ; 32S25 ; 32S55 ; 14T90 ; 14A21
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The splice type singularities introduced in 2001 by Neumann and Wahl provide the largest class known so far of links of isolated complete intersection surface singularities which are integral homology spheres. These singularities are determined up to equisingularity by particular kinds of decorated trees, called splice diagrams. Neumann and Wahl formulated the so-called Milnor fiber conjecture, stating that any choice of an internal edge of a splice diagram determines a kind of four-dimensional decomposition of the Milnor fiber of the associated singularity. The aim of this course is to explain the structure of a proof of this conjecture, obtained in collaboration with Maria Angelica Cueto and Dmitry Stepanov. lt uses a combination of toric, tropical and logarithmic geometry.
[-]
The splice type singularities introduced in 2001 by Neumann and Wahl provide the largest class known so far of links of isolated complete intersection surface singularities which are integral homology spheres. These singularities are determined up to equisingularity by particular kinds of decorated trees, called splice diagrams. Neumann and Wahl formulated the so-called Milnor fiber conjecture, stating that any choice of an internal edge of a ...
[+]
32S50 ; 32S25 ; 32S55 ; 14T90 ; 14A21
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The splice type singularities introduced in 2001 by Neumann and Wahl provide the largest class known so far of links of isolated complete intersection surface singularities which are integral homology spheres. These singularities are determined up to equisingularity by particular kinds of decorated trees, called splice diagrams. Neumann and Wahl formulated the so-called Milnor fiber conjecture, stating that any choice of an internal edge of a splice diagram determines a kind of four-dimensional decomposition of the Milnor fiber of the associated singularity. The aim of this course is to explain the structure of a proof of this conjecture, obtained in collaboration with Maria Angelica Cueto and Dmitry Stepanov. lt uses a combination of toric, tropical and logarithmic geometry.
[-]
The splice type singularities introduced in 2001 by Neumann and Wahl provide the largest class known so far of links of isolated complete intersection surface singularities which are integral homology spheres. These singularities are determined up to equisingularity by particular kinds of decorated trees, called splice diagrams. Neumann and Wahl formulated the so-called Milnor fiber conjecture, stating that any choice of an internal edge of a ...
[+]
32S50 ; 32S25 ; 32S55 ; 14T90 ; 14A21
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The splice type singularities introduced in 2001 by Neumann and Wahl provide the largest class known so far of links of isolated complete intersection surface singularities which are integral homology spheres. These singularities are determined up to equisingularity by particular kinds of decorated trees, called splice diagrams. Neumann and Wahl formulated the so-called Milnor fiber conjecture, stating that any choice of an internal edge of a splice diagram determines a kind of four-dimensional decomposition of the Milnor fiber of the associated singularity. The aim of this course is to explain the structure of a proof of this conjecture, obtained in collaboration with Maria Angelica Cueto and Dmitry Stepanov. lt uses a combination of toric, tropical and logarithmic geometry.
[-]
The splice type singularities introduced in 2001 by Neumann and Wahl provide the largest class known so far of links of isolated complete intersection surface singularities which are integral homology spheres. These singularities are determined up to equisingularity by particular kinds of decorated trees, called splice diagrams. Neumann and Wahl formulated the so-called Milnor fiber conjecture, stating that any choice of an internal edge of a ...
[+]
32S50 ; 32S25 ; 32S55 ; 14T90 ; 14A21
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We study germs of singular varieties in a symplectic space. We introduce the algebraic restrictions of differential forms to singular varieties and prove the generalization of Darboux-Givental' theorem from smooth submanifolds to arbitrary quasi-homogeneous varieties in a symplectic space. Using algebraic restrictions we introduce new symplectic invariants and explain their geometric meaning. We show that a quasi-homogeneous variety $N$ is contained in a non-singular Lagrangian submanifold if and only if the algebraic restriction of the symplectic form to $N$ vanishes. The method of algebraic restriction is a powerful tool for various classification problems in a symplectic space. We illustrate this by the construction of a complete system of invariants in the problem of classifying singularities of immersed $k$-dimensional submanifolds of a symplectic 2n-manifold at a generic double point.
Keywords: symplectic manifolds - symplectic multiplicity and other invariants - Darboux-Givental's theorem - quasi-homogeneous singularities - singularities of planar curves
[-]
We study germs of singular varieties in a symplectic space. We introduce the algebraic restrictions of differential forms to singular varieties and prove the generalization of Darboux-Givental' theorem from smooth submanifolds to arbitrary quasi-homogeneous varieties in a symplectic space. Using algebraic restrictions we introduce new symplectic invariants and explain their geometric meaning. We show that a quasi-homogeneous variety $N$ is ...
[+]
58K55 ; 32S25 ; 53D05
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The talk will present a complete Lipschitz classification of complex sur-face germs for the outer metric. It is based on the classification relative to the inner metric obtained 10 years ago with Lev Birbrair and Walter Neu-mann and on new tools involving non archimedean geometry, in particular the non-archimedean link which is a generalization of the valuative tree introduced by Favre and Jonsson, and ultrametrics on what we call the log-arithmic link of the singularity. This is a joint work with Lorenzo Fantini and Walter Neumann.
[-]
The talk will present a complete Lipschitz classification of complex sur-face germs for the outer metric. It is based on the classification relative to the inner metric obtained 10 years ago with Lev Birbrair and Walter Neu-mann and on new tools involving non archimedean geometry, in particular the non-archimedean link which is a generalization of the valuative tree introduced by Favre and Jonsson, and ultrametrics on what we call the l...
[+]
32S25 ; 57M27