Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
These lectures are a mostly self-contained sequel to Vaughn Climenhaga's talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, the question of when the “pressure gap” hypothesis can be verified becomes crucial. I will sketch our proof of the “entropy gap”, which is a new direct constructive proof of a result by Knieper. I will also describe new joint work with Ben Call, which shows that all the unique equilibrium states provided above have the Kolmogorov property. When the manifold has dimension at least 3, this is a new result even for the Knieper-Bowen-Margulis measure of maximal entropy. The common thread that links all of these arguments is that they rely on weak orbit specification properties in the spirit of Bowen.
[-]
These lectures are a mostly self-contained sequel to Vaughn Climenhaga's talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, ...
[+]
37D35 ; 37D40 ; 37C40 ; 37D25
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
These lectures are a mostly self-contained sequel to Vaughn Climenhaga's talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, the question of when the “pressure gap” hypothesis can be verified becomes crucial. I will sketch our proof of the “entropy gap”, which is a new direct constructive proof of a result by Knieper. I will also describe new joint work with Ben Call, which shows that all the unique equilibrium states provided above have the Kolmogorov property. When the manifold has dimension at least 3, this is a new result even for the Knieper-Bowen-Margulis measure of maximal entropy. The common thread that links all of these arguments is that they rely on weak orbit specification properties in the spirit of Bowen.
[-]
These lectures are a mostly self-contained sequel to Vaughn Climenhaga's talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, ...
[+]
37D35 ; 37D40 ; 37C40 ; 37D25
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
These lectures are a mostly self-contained sequel to Vaughn Climenhaga's talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, the question of when the “pressure gap” hypothesis can be verified becomes crucial. I will sketch our proof of the “entropy gap”, which is a new direct constructive proof of a result by Knieper. I will also describe new joint work with Ben Call, which shows that all the unique equilibrium states provided above have the Kolmogorov property. When the manifold has dimension at least 3, this is a new result even for the Knieper-Bowen-Margulis measure of maximal entropy. The common thread that links all of these arguments is that they rely on weak orbit specification properties in the spirit of Bowen.
[-]
These lectures are a mostly self-contained sequel to Vaughn Climenhaga's talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, ...
[+]
37D35 ; 37D40 ; 37C40 ; 37D25
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Smooth parametrizations of semi-algebraic sets were introduced by Yomdin in order to bound the local volume growth in his proof of Shub's entropy conjecture for C∞ maps. In this minicourse we will present some refinement of Yomdin's theory which allows us to also control the distortion. We will give two new applications: - for any C∞ surface diffeomorphism f with positive entropy the saddle periodic points with Lyapunov exponents $\delta$-away from zero for $\delta \in]0,htop(f)[$ are equidistributed along measures of maximal entropy. - for C∞ maps the entropy is physically greater than or equal to the top Lyapunov exponents of the exterior powers.
[-]
Smooth parametrizations of semi-algebraic sets were introduced by Yomdin in order to bound the local volume growth in his proof of Shub's entropy conjecture for C∞ maps. In this minicourse we will present some refinement of Yomdin's theory which allows us to also control the distortion. We will give two new applications: - for any C∞ surface diffeomorphism f with positive entropy the saddle periodic points with Lyapunov exponents $\delta$-away ...
[+]
37C05 ; 37C40 ; 37D25
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Smooth parametrizations of semi-algebraic sets were introduced by Yomdin in order to bound the local volume growth in his proof of Shub's entropy conjecture for C∞ maps. In this minicourse we will present some refinement of Yomdin's theory which allows us to also control the distortion. We will give two new applications: - for any C∞ surface diffeomorphism f with positive entropy the saddle periodic points with Lyapunov exponents $\delta$-away from zero for $\delta \in]0,htop(f)[$ are equidistributed along measures of maximal entropy. - for C∞ maps the entropy is physically greater than or equal to the top Lyapunov exponents of the exterior powers.
[-]
Smooth parametrizations of semi-algebraic sets were introduced by Yomdin in order to bound the local volume growth in his proof of Shub's entropy conjecture for C∞ maps. In this minicourse we will present some refinement of Yomdin's theory which allows us to also control the distortion. We will give two new applications: - for any C∞ surface diffeomorphism f with positive entropy the saddle periodic points with Lyapunov exponents $\delta$-away ...
[+]
37C05 ; 37C40 ; 37D25
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Smooth parametrizations of semi-algebraic sets were introduced by Yomdin in order to bound the local volume growth in his proof of Shub's entropy conjecture for C∞ maps. In this minicourse we will present some refinement of Yomdin's theory which allows us to also control the distortion. We will give two new applications: - for any C∞ surface diffeomorphism f with positive entropy the saddle periodic points with Lyapunov exponents $\delta$-away from zero for $\delta \in]0,htop(f)[$ are equidistributed along measures of maximal entropy. - for C∞ maps the entropy is physically greater than or equal to the top Lyapunov exponents of the exterior powers.
[-]
Smooth parametrizations of semi-algebraic sets were introduced by Yomdin in order to bound the local volume growth in his proof of Shub's entropy conjecture for C∞ maps. In this minicourse we will present some refinement of Yomdin's theory which allows us to also control the distortion. We will give two new applications: - for any C∞ surface diffeomorphism f with positive entropy the saddle periodic points with Lyapunov exponents $\delta$-away ...
[+]
37C05 ; 37C40 ; 37D25
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
$Let (X,T)$ be a dynamical system preserving a probability measure $\mu $. A concentration inequality quantifies how small is the probability for $F(x,Tx,\ldots,T^{n-1}x)$ to deviate from $\int F(x,Tx,\ldots,T^{n-1}x) \mathrm{d}\mu(x)$ by an given amount $u$, where $F:X^n\to\mathbb{R}$ is supposed to be separately Lipschitz. The bound on that probability involves a constant $C$ depending only on the dynamical system (thus independent of $n$), and $\sum_{i=0}^{n-1} \mathrm{Lip}_i(F)^2$. In the best situation, the bound is $\exp(-C u^2/\sum_{i=0}^{n-1} \mathrm{Lip}_i(F)^2)$.
After explaining how to get such a bound for independent random variables, I will show how to prove it for a Gibbs measure on a shift of finite type with a Lipschitz potential, and present examples of functions $F$ to which one can apply the inequality. Finally, I will survey some results obtained for nonuniformly hyperbolic systems modeled by Young towers.
[-]
$Let (X,T)$ be a dynamical system preserving a probability measure $\mu $. A concentration inequality quantifies how small is the probability for $F(x,Tx,\ldots,T^{n-1}x)$ to deviate from $\int F(x,Tx,\ldots,T^{n-1}x) \mathrm{d}\mu(x)$ by an given amount $u$, where $F:X^n\to\mathbb{R}$ is supposed to be separately Lipschitz. The bound on that probability involves a constant $C$ depending only on the dynamical system (thus independent of $n$), ...
[+]
37D20 ; 37D25 ; 37A50
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We study dynamics of geodesic flows over closed surfaces of genus greater than or equal to 2 without focal points. Especially, we prove that there is a large class of potentials having unique equilibrium states, including scalar multiples of the geometric potential, provided the scalar is less than 1. Moreover, we discuss ergodic properties of these unique equilibrium states. We show these unique equilibrium states are Bernoulli, and weighted regular periodic orbits are equidistributed relative to these unique equilibrium states.
[-]
We study dynamics of geodesic flows over closed surfaces of genus greater than or equal to 2 without focal points. Especially, we prove that there is a large class of potentials having unique equilibrium states, including scalar multiples of the geometric potential, provided the scalar is less than 1. Moreover, we discuss ergodic properties of these unique equilibrium states. We show these unique equilibrium states are Bernoulli, and weighted ...
[+]
37D35 ; 37D40 ; 37D25
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
An early motivation of smooth ergodic theory was to provide a mathematical account for the unpredictable, chaotic behavior of real-world fluids. While many interesting questions remain, in the last 25 years significant progress has been achieved in understanding models of fluid mechanics, e.g., the Navier-Stokes equations, in the presence of stochastic driving. Noise is natural for modeling purposes, and certain kinds of noise have a regularizing effect on asymptotic statistics. These kinds of noise provide an effective technical tool for rendering tractable otherwise inaccessible results on chaotic regimes, e.g., positivity of Lyapunov exponents and the presence of a strange attractor supporting a physical (SRB) measure. In this talk I will describe some of my work in this vein, including a recent result with Jacob Bedrossian and Sam Punshon-Smith providing positive Lyapunov exponents for f inite-dimensional (a.k.a. Galerkin) truncations of the Navier-Stokes equations.
[-]
An early motivation of smooth ergodic theory was to provide a mathematical account for the unpredictable, chaotic behavior of real-world fluids. While many interesting questions remain, in the last 25 years significant progress has been achieved in understanding models of fluid mechanics, e.g., the Navier-Stokes equations, in the presence of stochastic driving. Noise is natural for modeling purposes, and certain kinds of noise have a re...
[+]
37H15 ; 35H10 ; 37D25 ; 58J65 ; 35B65