En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14D24 5 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Kapustin and Witten introduced a powerful perspective on the geometric Langlands correspondence as an aspect of electric-magnetic duality in four dimensional gauge theory. While the familiar (de Rham) correspondence is best seen as a statement in conformal field theory, much of the structure can be seen in the simpler (Betti) setting of topological field theory using Lurie's proof of the Cobordism Hypothesis. In these lectures I will explain this perspective and illustrate its applications to representation theory following joint work with Nadler as well as Brochier, Gunningham, Jordan and Preygel.[-]
Kapustin and Witten introduced a powerful perspective on the geometric Langlands correspondence as an aspect of electric-magnetic duality in four dimensional gauge theory. While the familiar (de Rham) correspondence is best seen as a statement in conformal field theory, much of the structure can be seen in the simpler (Betti) setting of topological field theory using Lurie's proof of the Cobordism Hypothesis. In these lectures I will explain ...[+]

14D24 ; 22E57 ; 22E46 ; 20G05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Kapustin and Witten introduced a powerful perspective on the geometric Langlands correspondence as an aspect of electric-magnetic duality in four dimensional gauge theory. While the familiar (de Rham) correspondence is best seen as a statement in conformal field theory, much of the structure can be seen in the simpler (Betti) setting of topological field theory using Lurie's proof of the Cobordism Hypothesis. In these lectures I will explain this perspective and illustrate its applications to representation theory following joint work with Nadler as well as Brochier, Gunningham, Jordan and Preygel.[-]
Kapustin and Witten introduced a powerful perspective on the geometric Langlands correspondence as an aspect of electric-magnetic duality in four dimensional gauge theory. While the familiar (de Rham) correspondence is best seen as a statement in conformal field theory, much of the structure can be seen in the simpler (Betti) setting of topological field theory using Lurie's proof of the Cobordism Hypothesis. In these lectures I will explain ...[+]

14D24 ; 22E57 ; 22E46 ; 20G05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The coherent Satake category - Williams, Harold (Auteur de la conférence) | CIRM H

Multi angle

The geometric Satake equivalence identifies the Satake category of a reductive group $G$ – that is, the category of equivariant perverse sheaves on the affine Grassmannian $G_{rG}$ – with the representation category of its Langlands dual group $G^∨$. While the Satake category is topological in nature, it has a poorly understood algebro-geometric cousin: the category of perverse coherent sheaves on $G_{rG}$. This category is not semi-simple and its monoidal product is not symmetric. We show however that it is rigid and admits renormalized r-matrices similar to those appearing in the theory of quantum loop or KLR algebras. Applying the framework developed by Kang-Kashiwara-Kim-Oh in their proof of the dual canonical basis conjecture, we use these results to show that the coherent Satake category of $GL_n$ is a monoidal cluster categorification in the sense of Hernandez-Leclerc. This clarifies the physical meaning of the coherent Satake category: simple perverse coherent sheaves correspond to Wilson-'t Hooft operators in $\mathcal{N} = 2$ gauge theory, just as simple perverse sheaves correspond to 't Hooft operators in $\mathcal{N} = 4$ gauge theory following the work of Kapustin-Witten. Our results also explain the appearance of identical quivers in the work of Kedem-Di Francesco on $Q$-systems and in the context of BPS quivers. More generally, our construction of renormalized r-matrices works in any chiral $E_1$-category, providing a new way of understanding the ubiquity of cluster algebras in $\mathcal{N} = 2$ field theory: the existence of renormalized r-matrices, hence of iterated cluster mutation, is a formal feature of such theories after passing to their holomorphic-topological twists. This is joint work with Sabin Cautis (arXiv:1801.08111).[-]
The geometric Satake equivalence identifies the Satake category of a reductive group $G$ – that is, the category of equivariant perverse sheaves on the affine Grassmannian $G_{rG}$ – with the representation category of its Langlands dual group $G^∨$. While the Satake category is topological in nature, it has a poorly understood algebro-geometric cousin: the category of perverse coherent sheaves on $G_{rG}$. This category is not semi-simple and ...[+]

14D24 ; 14F05 ; 14M15 ; 18D10 ; 13F60 ; 17B37 ; 81T13

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Basics on affine Grassmanianns - Richarz, Timo (Auteur de la conférence) | CIRM H

Multi angle

The aim is to give an introduction to the basic theory of affine Grassmannians and affine flag varieties. We put special emphasis on the utility of dynamic methods in sense of Drinfeld [D], and the utility of non-constant group schemes. We plan to adress the following aspects:
• Affine Grassmannians as moduli spaces of G-bundles, and as quotients of loop groups ;
• Cell decompositions of affine Grassmannians and affine flag varieties via dynamic methods: Iwahori, Cartan and Iwasawa decompositions ;
• Schubert varieties, Demazure resolutions, Convolution morphisms, Combinatorial structures ;
• Moduli spaces of G-bundles with level structure versus bundles under non-constant group schemes ;
• Beilinson-Drinfeld type deformations of affine Grassmannians ;
• Relation to the local geometry of moduli spaces of Drinfeld shtukas and Shimura varieties.[-]
The aim is to give an introduction to the basic theory of affine Grassmannians and affine flag varieties. We put special emphasis on the utility of dynamic methods in sense of Drinfeld [D], and the utility of non-constant group schemes. We plan to adress the following aspects:
• Affine Grassmannians as moduli spaces of G-bundles, and as quotients of loop groups ;
• Cell decompositions of affine Grassmannians and affine flag varieties via dynamic ...[+]

14M15 ; 14D24

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Betti Langlands in genus one - Nadler, David (Auteur de la conférence) | CIRM H

Multi angle

We will report on an ongoing project to understand geometric Langlands in genus one, in particular a version that depends only on the topology of the curve (as appears in physical descriptions of the subject). The emphasis will be on the realization of the automorphic and spectral categories as the center/cocenter of the affine Hecke category. We will mention work with D. Ben-Zvi and A. Preygel that accomplishes this on the spectral side, then focus on ongoing work with D. Ben-Zvi, building on work with P. Li, that we expect will lead to a parallel automorphic result.[-]
We will report on an ongoing project to understand geometric Langlands in genus one, in particular a version that depends only on the topology of the curve (as appears in physical descriptions of the subject). The emphasis will be on the realization of the automorphic and spectral categories as the center/cocenter of the affine Hecke category. We will mention work with D. Ben-Zvi and A. Preygel that accomplishes this on the spectral side, then ...[+]

22E57 ; 14D24

Sélection Signaler une erreur