Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In his PhD thesis, A. Woerheide constructed well-behaved homology groups for definable sets in o-minimal expansions of real closed fields. The question arises whether such groups exist in o-minimal reducts, such as ordered vector spaces over ordered division rings. Why is this question interesting? A positive answer, combined with the work of Hrushovski-Loeser on stable completions, forms the basis for defining homology groups of definable sets in algebraically closed valued fields (ACVF). As an application, one can recover and extend results of S. Basu and D. Patel concerning uniform bounds of Betti numbers in ACVF. In this talk, I will present results and advancements on this topic. This is an ongoing joint work with Mario Edmundo, Pantelis Eleftheriou and Jinhe Ye.
[-]
In his PhD thesis, A. Woerheide constructed well-behaved homology groups for definable sets in o-minimal expansions of real closed fields. The question arises whether such groups exist in o-minimal reducts, such as ordered vector spaces over ordered division rings. Why is this question interesting? A positive answer, combined with the work of Hrushovski-Loeser on stable completions, forms the basis for defining homology groups of definable sets in ...
[+]
12J25 ; 03C98 ; 03C64 ; 55N35
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A valuation $v$ on a field $K$ is said to be definable (in a specified language) if its corresponding valuation ring is a definable subset of $K$. Historically, the study of definable valuations on certain fields was motivated by the general analysis of definable subsets of fields and related decidability questions, but has also re-emerged lately in the context of classifying NIP fields. In my talk, I will present some recent progress in the study of definable valuations on ordered fields ([1] to [4]), where definability is considered in the language of rings as well as the richer language of ordered rings. Within this framework, the focus lies on convex valuations, that is, valuations whose valuation ring is convex with respect to the linear ordering on the field. The most important examples of such valuations are the henselian ones, which are convex with respect to any linear ordering on the field. I will present topological conditions on the value group and the residue field ensuring the definability of the corresponding valuation. Moreover, I will outline some definability and non-definability results in the context of specific classes of ordered fields such as t-henselian, almost real closed, and strongly dependent ones.
[-]
A valuation $v$ on a field $K$ is said to be definable (in a specified language) if its corresponding valuation ring is a definable subset of $K$. Historically, the study of definable valuations on certain fields was motivated by the general analysis of definable subsets of fields and related decidability questions, but has also re-emerged lately in the context of classifying NIP fields. In my talk, I will present some recent progress in the ...
[+]
03C64 ; 12J10 ; 13J15 ; 13J30 ; 13F25 ; 12J25