En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 05B25 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Let $V$ be an $(n+1)$-dimensional vector space over an arbitrary field $\mathbb{K}$ and denote by $\mathrm{PG}(V)$ the corresponding projective space. Define $\Gamma$ as the point-hyperplane geometry of $\mathrm{PG}(V)$, whose points are the pairs $(p, H)$, where $p$ is a point, $H$ is a hyperplane of $\mathrm{PG}(V)$ and $p \in H$ and whose lines are the sets $\ell_{p, *}:=\{(p, U): p \in U\}$ or $\ell_{*, H}=\{(x, H): x \in H\}$. The geometry $\Gamma$ is also known as the long root geometry for the special linear group $\mathrm{SL}(n+1, \mathbb{K})$ and admits an embedding (the Segre embedding of $\Gamma$ ) in the projective space $\mathrm{PG}\left(M_0\right)$, where $M_0$ is the vector space of the traceless square matrices of order $n+1$ with entries in the field $\mathbb{K}$. Since $M_0$ is isomorphic to a hyperplane of the vector space $V \otimes V^*$, we explicitly have

$$
\varepsilon: \Gamma \rightarrow \mathrm{PG}\left(M_0\right), \quad \varepsilon((\langle x\rangle,\langle\xi\rangle))=\langle x \otimes \xi\rangle,
$$

with $x \in V \backslash\{0\}, \xi \in V^* \backslash\{0\}$. The image $\Lambda_1:=\varepsilon(\Gamma)$ of $\varepsilon$ is represented by the pure tensors $x \otimes \xi$ with $x \in V$ and $\xi \in V^*$ such that $\xi(x)=0$.

If the underlying field $\mathbb{K}$ admits non-trivial automorphisms, for $1 \neq \sigma \in \operatorname{Aut}(\mathrm{K})$, then it is possible to define a 'twisted version' $\varepsilon_\sigma$ of $\varepsilon$ as follows

$$
\varepsilon_\sigma: \Gamma \rightarrow \mathrm{PG}\left(V \otimes V^*\right), \varepsilon_\sigma((\langle x\rangle,\langle\xi\rangle))=\left\langle x^\sigma \otimes \xi\right\rangle,
$$

where $x^\sigma:=\left(x_i{ }^\sigma\right)_{i=1}^{n+1}$.
Consequently, the points of $\Lambda_\sigma:=\varepsilon_\sigma(\Gamma)$ are represented by pure tensors of the form $x^\sigma \otimes \xi$, under the condition $\xi(x)=0$.

In the first part of the talk I will address the problem of the universality of the Segre embedding $\varepsilon$ for $\Gamma$ proving that the answer to this question depends on the underlying field $\mathbb{K}$ and generalizing a previous result for $n=2$ (see recent work of I. Cardinali, L. Giuzzi, A. Pasini).

In the second part of the talk, I shall focus on the case where $\mathbb{K}=\mathbb{F}_q$ is a finite field of order $q$. Thus, regarding $\Lambda_1$ and $\Lambda_\sigma$ as projective systems of $\mathrm{PG}\left(M_0\right)$ respectively $\mathrm{PG}\left(V \otimes V^*\right)$, I will consider the linear codes $\mathcal{C}\left(\Lambda_1\right)$ and $\mathcal{C}\left(\Lambda_\sigma\right)$ arising from them. I shall determine the parameters of $\mathcal{C}(\Lambda)$ and $\mathcal{C}\left(\Lambda_\sigma\right)$ as well as their weight list. I will also give a (geometrical) characterization of some of the words of these codes having minimum or maximal weight (see recent work of I. Cardinali, L. Giuzzi).[-]
Let $V$ be an $(n+1)$-dimensional vector space over an arbitrary field $\mathbb{K}$ and denote by $\mathrm{PG}(V)$ the corresponding projective space. Define $\Gamma$ as the point-hyperplane geometry of $\mathrm{PG}(V)$, whose points are the pairs $(p, H)$, where $p$ is a point, $H$ is a hyperplane of $\mathrm{PG}(V)$ and $p \in H$ and whose lines are the sets $\ell_{p, *}:=\{(p, U): p \in U\}$ or $\ell_{*, H}=\{(x, H): x \in H\}$. The geometry ...[+]

51A45 ; 51B25 ; 05B25 ; 94B27

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A cap is a point set in affine or projective space without any three points on any line. We will discuss the current state of
the art, and give an exponential improvement for the size of caps of AG(n, p), which one can think of as (Z/pZ)^n, and PG(n,p). For certain primes, 5,11,17,23,29 and 41, we improve the asymptotic growth of these caps, for example, when p=23 from (8.091...)^n to (9-o(1))^n, as n tends to infinity.

51E20 ; 51E22 ; 05B25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Divisible codes - Kurz, Sascha (Auteur de la Conférence) | CIRM H

Multi angle

A linear code over Fq with the Hamming metric is called ∆-divisible if the weights of all codewords are divisible by ∆. They have been introduced by Harold Ward a few decades ago. Applications include subspace codes, partial spreads, vector space partitions, and distance optimal codes. The determination of the possible lengths of projective divisible codes is an interesting and comprehensive challenge.

94B05 ; 51E23 ; 05B25

Sélection Signaler une erreur