En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 20-XX 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

the group of tame automorphisms - Lecture 1 - Lamy, Stéphane (Auteur de la Conférence) | CIRM H

Multi angle

The group Aut($\mathbb{A}^{n}$) of polynomial automorphisms of the a ne space is an interesting huge group, and a slightly simpler group is its subgroup Aut($\mathbb{A}^{n}$) of tame automorphisms. Natural questions about these groups include:– does they admit normal subgroups beside the obvious subgroup of automorphisms with Jacobian 1?– do they satisfy a Tits alternative?– what are the possible dynamical degrees of their elements? The method to investigate these questions is via some actions on some metric spaces, namely the coset complex and the valuation complex, that we plan to introduce in detail. The lectures will focus on the following three cases: the group Aut($\mathbb{A}^{2}$) = Tame($\mathbb{A}^{2}$) following Chapter 7 of my book in preparation, then the group Tame($\mathbb{A}^{3}$) (Lamy, LamyPrzytycki, Blanc-Van Santen), and finally the group Tame(Q($\mathbb{A}^{4}$)) of tame automorphisms of $\mathbb{A}^{4}$ preserving a nondegenerate quadratic form (Bisi-Furter-Lamy, Martin, Dang).[-]
The group Aut($\mathbb{A}^{n}$) of polynomial automorphisms of the a ne space is an interesting huge group, and a slightly simpler group is its subgroup Aut($\mathbb{A}^{n}$) of tame automorphisms. Natural questions about these groups include:– does they admit normal subgroups beside the obvious subgroup of automorphisms with Jacobian 1?– do they satisfy a Tits alternative?– what are the possible dynamical degrees of their elements? The method ...[+]

14-XX ; 20-XX ; 37-XX

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

the group of tame automorphisms - Lecture 2 - Lamy, Stéphane (Auteur de la Conférence) | CIRM H

Multi angle

The group of tame automorphisms. The group Aut($\mathbb{A}^{n}$) of polynomial automorphisms of the a ne space is an interesting huge group, and a slightly simpler group is its subgroup Aut($\mathbb{A}^{n}$) of tame automorphisms. Natural questions about these groups include:– does they admit normal subgroups beside the obvious subgroup of automorphisms with Jacobian 1?– do they satisfy a Tits alternative?– what are the possible dynamical degrees of their elements? The method to investigate these questions is via some actions on some metric spaces, namely the coset complex and the valuation complex, that we plan to introduce in detail. The lectures will focus on the following three cases: the group Aut($\mathbb{A}^{2}$) = Tame($\mathbb{A}^{2}$) following Chapter 7 of my book in preparation, then the group Tame($\mathbb{A}^{3}$) (Lamy, LamyPrzytycki, Blanc-Van Santen), and finally the group Tame(Q($\mathbb{A}^{4}$)) of tame automorphisms of $\mathbb{A}^{4}$ preserving a nondegenerate quadratic form (Bisi-Furter-Lamy, Martin, Dang).[-]
The group of tame automorphisms. The group Aut($\mathbb{A}^{n}$) of polynomial automorphisms of the a ne space is an interesting huge group, and a slightly simpler group is its subgroup Aut($\mathbb{A}^{n}$) of tame automorphisms. Natural questions about these groups include:– does they admit normal subgroups beside the obvious subgroup of automorphisms with Jacobian 1?– do they satisfy a Tits alternative?– what are the possible dynamical ...[+]

14-XX ; 20-XX ; 37-XX

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The group of tame automorphisms - Lecture 3 - Lamy, Stéphane (Auteur de la Conférence) | CIRM H

Multi angle

The group of tame automorphisms. The group Aut($\mathbb{A}^{n}$) of polynomial automorphisms of the a ne space is an interesting huge group, and a slightly simpler group is its subgroup Aut($\mathbb{A}^{n}$) of tame automorphisms. Natural questions about these groups include:– does they admit normal subgroups beside the obvious subgroup of automorphisms with Jacobian 1?– do they satisfy a Tits alternative?– what are the possible dynamical degrees of their elements? The method to investigate these questions is via some actions on some metric spaces, namely the coset complex and the valuation complex, that we plan to introduce in detail. The lectures will focus on the following three cases: the group Aut($\mathbb{A}^{2}$) = Tame($\mathbb{A}^{2}$) following Chapter 7 of my book in preparation, then the group Tame($\mathbb{A}^{3}$) (Lamy, LamyPrzytycki, Blanc-Van Santen), and finally the group Tame(Q($\mathbb{A}^{4}$)) of tame automorphisms of $\mathbb{A}^{4}$ preserving a nondegenerate quadratic form (Bisi-Furter-Lamy, Martin, Dang).[-]
The group of tame automorphisms. The group Aut($\mathbb{A}^{n}$) of polynomial automorphisms of the a ne space is an interesting huge group, and a slightly simpler group is its subgroup Aut($\mathbb{A}^{n}$) of tame automorphisms. Natural questions about these groups include:– does they admit normal subgroups beside the obvious subgroup of automorphisms with Jacobian 1?– do they satisfy a Tits alternative?– what are the possible dynamical ...[+]

14-XX ; 20-XX ; 37-XX

Sélection Signaler une erreur