Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
There is an emerging consensus in the transdiciplinary literature that the ultimate goal of regression analysis is to model the conditional distribution of an outcome, given a set of explanatory variables or covariates. This new approach is called "distributional regression", and marks a clear break from the classical view of regression, which has focused on estimating a conditional mean or quantile only. Isotonic Distributional Regression (IDR) learns conditional distributions that are simultaneously optimal relative to comprehensive classes of relevant loss functions, subject to monotonicity constraints in terms of a partial order on the covariate space. This IDR solution is exactly computable and does not require approximations nor implementation choices, except for the selection of the partial order. Despite being an entirely generic technique, IDR is strongly competitive with state-of-the-art methods in a case study on probabilistic precipitation forecasts from a leading numerical weather prediction model.
Joint work with Alexander Henzi and Johanna F. Ziegel.
[-]
There is an emerging consensus in the transdiciplinary literature that the ultimate goal of regression analysis is to model the conditional distribution of an outcome, given a set of explanatory variables or covariates. This new approach is called "distributional regression", and marks a clear break from the classical view of regression, which has focused on estimating a conditional mean or quantile only. Isotonic Distributional Regression (IDR) ...
[+]
62J02 ; 68T09
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The maximum score statistic is used to detect and estimate changes in the level, slope, or other local feature of a sequance of observations, and to segment the sequence xhen there appear to be multiple changes. Control of false positive errors when observations are auto-correlated is achieved by using a first order autoregressive model. True changes in level or slope can lead to badly biased estimates of the autoregressive parameter and variance, which can result in a loss of power. Modifications of the natural estimators to deal with this difficulty are partially successful. Applications to temperature time series, atmospheric CO2 levels, COVID-19 incidence, excess deaths, copy number variations, and weather extremes illustrate the general theory.
This is joint research with Xiao Fang.
[-]
The maximum score statistic is used to detect and estimate changes in the level, slope, or other local feature of a sequance of observations, and to segment the sequence xhen there appear to be multiple changes. Control of false positive errors when observations are auto-correlated is achieved by using a first order autoregressive model. True changes in level or slope can lead to badly biased estimates of the autoregressive parameter and ...
[+]
62H10 ; 62J02 ; 62L10