En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 81R50 5 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Recent developments in quantum information led to a generalised notion of reference frames transformations, relevant when reference frames are associated to quantum systems. In this talk, I discuss whether such quantum reference frame transformations could realise a notion of deformed symmetries formalised as quantum group transformations. In particular, I show the correspondence between quantum reference frame transformations and transformations generated by a quantum deformation of the Galilei group with commutative time, taken at the first order in the quantum deformation parameter. This correspondence is found once the group noncommutative transformation parameters are represented on the phase space of a quantum particle, and upon setting the quantum deformation parameter to be proportional to the inverse of the mass of the particle serving as the quantum reference frame.[-]
Recent developments in quantum information led to a generalised notion of reference frames transformations, relevant when reference frames are associated to quantum systems. In this talk, I discuss whether such quantum reference frame transformations could realise a notion of deformed symmetries formalised as quantum group transformations. In particular, I show the correspondence between quantum reference frame transformations and trans...[+]

81R50 ; 81P10 ; 81R60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

T-Minkowski noncommutative spacetimes - Mercati, Flavio (Auteur de la Conférence) | CIRM H

Multi angle

This talk introduces a class of Hopf algebras, called T -Poincaré, which represent, arguably, the simplest small scale/high energy quantum group deformations of the Poincaré group. Starting from some reasonable assumptions on the structure of the commutators, I am able to show that these models arise from a class of classical r-matrices on the Poincaré group. These have been known since the work of Zakrzewski and Tolstoy, and allow me to identify 16 multiparametric models. Each T -Poincaré model admits a canonical 4-dimensional quantum homogeneous spacetime, T -Minkowski, which is left invariant by the coaction of the group. A key result is the systematic unification provided by this framework, which incorporates well-established non-commutative spacetimes like Moyal, lightlike κ-Minkowski, and ρ-Minkowski as specific instances. I will then outline all the mathematical structures that are necessary in order to study field theory on these spaces: differential and integral calculus, noncommutative Fourier theory, and braided tensor products. I will then discuss how to describe (classical) Standard Model fields within this framework, and the challenges associated with quantum field theory. Particular focus is placed on the Poincar´e covariance of these models, with the goal of finding a mathematically consistent model of physics at the Planck scale that preserves the principle of Special Relativity while possessing a noncommutativity length scale.[-]
This talk introduces a class of Hopf algebras, called T -Poincaré, which represent, arguably, the simplest small scale/high energy quantum group deformations of the Poincaré group. Starting from some reasonable assumptions on the structure of the commutators, I am able to show that these models arise from a class of classical r-matrices on the Poincaré group. These have been known since the work of Zakrzewski and Tolstoy, and allow me to ...[+]

20G42 ; 20G45 ; 58B32 ; 81R60 ; 81R50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

From $Q$-systems to quantum affine algebras and beyond - Kedem, Rinat (Auteur de la Conférence) | CIRM H

Multi angle

The theory of cluster algebras has proved useful in proving theorems about the characters of graded tensor products or Demazure modules, via the $Q$-system. Upon quantization, the algebra associated with this system is shown to be related to a quantum affine algebra. Graded characters are related to a polynomial representation of the quantum cluster variables. This immediately suggests a further deformation to the spherical DAHA, quantum toroidal algebras and elliptic Hall algebras.[-]
The theory of cluster algebras has proved useful in proving theorems about the characters of graded tensor products or Demazure modules, via the $Q$-system. Upon quantization, the algebra associated with this system is shown to be related to a quantum affine algebra. Graded characters are related to a polynomial representation of the quantum cluster variables. This immediately suggests a further deformation to the spherical DAHA, quantum ...[+]

13F60 ; 17B37 ; 81R50 ; 17B10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Nakayama automorphism of an Artin-Schelter regular algebra $A$ controls the class of quantum groups that act on the algebra $A$. Several applications are given.

16T05 ; 81R50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I shall talk about an old, but not always correctly understood, paper which we wrote with N. Reshetikhin.

82B23 ; 82B20 ; 81T40 ; 81R50

Sélection Signaler une erreur