Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Dimer models provide natural models of (2+1)-dimensional random discrete interfaces and of stochastic interface dynamics. I will discuss two examples of such dynamics, a reversible one and a driven one (growth process). In both cases we can prove the convergence of the stochastic interface evolution to a deterministic PDE after suitable (diffusive or hyperbolic respectively in the two cases) space-time rescaling.
Based on joint work with B. Laslier and M. Legras.
[-]
Dimer models provide natural models of (2+1)-dimensional random discrete interfaces and of stochastic interface dynamics. I will discuss two examples of such dynamics, a reversible one and a driven one (growth process). In both cases we can prove the convergence of the stochastic interface evolution to a deterministic PDE after suitable (diffusive or hyperbolic respectively in the two cases) space-time rescaling.
Based on joint work with B. ...
[+]
60K35 ; 82C20
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In earlier work (arXiv:1707.04927) the authors obtained formulas for the probability in the asymmetric simple exclusion process that at time t a particle is at site x and is the beginning of a block of L consecutive particles. Here we consider asymptotics. Specifically, for the KPZ regime with step initial condition, we determine the conditional probability (asymptotically as $t\rightarrow\infty$) that a particle is the beginning of an L-block, given that it is at site x at time t. Using duality between occupied and unoccupied sites we obtain the analogous result for a gap of G unoccupied sites between the particle at x and the next one.
[-]
In earlier work (arXiv:1707.04927) the authors obtained formulas for the probability in the asymmetric simple exclusion process that at time t a particle is at site x and is the beginning of a block of L consecutive particles. Here we consider asymptotics. Specifically, for the KPZ regime with step initial condition, we determine the conditional probability (asymptotically as $t\rightarrow\infty$) that a particle is the beginning of an L-block, ...
[+]
82C22 ; 82C23 ; 82C20