En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 90C22 4 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Polynomial optimization methods often encompass many major scalability issues on the practical side. Fortunately, for many real-world problems, we can look at them in the eyes and exploit the inherent data structure arising from the input cost and constraints. The first part of my lecture will focus on the notion of 'correlative sparsity', occurring when there are few correlations between the variables of the input problem. The second part will present a complementary framework, where we show how to exploit a distinct notion of sparsity, called 'term sparsity', occurring when there are a small number of terms involved in the input problem by comparison with the fully dense case. At last but not least, I will present a very recently developed type of sparsity that we call 'ideal-sparsity', which exploits the presence of equality constraints. Several illustrations will be provided on important applications arising from various fields, including computer arithmetic, robustness of deep networks, quantum entanglement, optimal power-flow, and matrix factorization ranks.[-]
Polynomial optimization methods often encompass many major scalability issues on the practical side. Fortunately, for many real-world problems, we can look at them in the eyes and exploit the inherent data structure arising from the input cost and constraints. The first part of my lecture will focus on the notion of 'correlative sparsity', occurring when there are few correlations between the variables of the input problem. The second part will ...[+]

65F50 ; 90C22 ; 90C23

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

The moment-LP and moment-SOS hierarchies - Lasserre, Jean Bernard (Auteur de la Conférence) | CIRM H

Post-edited

We review basic properties of the moment-LP and moment-SOS hierarchies for polynomial optimization and compare them. We also illustrate how to use such a methodology in two applications outside optimization. Namely :
- for approximating (as claosely as desired in a strong sens) set defined with quantifiers of the form
$R_1 =\{ x\in B : f(x,y)\leq 0 $ for all $y$ such that $(x,y) \in K \}$.
$D_1 =\{ x\in B : f(x,y)\leq 0 $ for some $y$ such that $(x,y) \in K \}$.
by a hierarchy of inner sublevel set approximations
$\Theta_k = \left \{ x\in B : J_k(x)\leq 0 \right \}\subset R_f$.
or outer sublevel set approximations
$\Theta_k = \left \{ x\in B : J_k(x)\leq 0 \right \}\supset D_f$.
for some polynomiales $(J_k)$ of increasing degree :
- for computing convex polynomial underestimators of a given polynomial $f$ on a box $B \subset R^n$.[-]
We review basic properties of the moment-LP and moment-SOS hierarchies for polynomial optimization and compare them. We also illustrate how to use such a methodology in two applications outside optimization. Namely :
- for approximating (as claosely as desired in a strong sens) set defined with quantifiers of the form
$R_1 =\{ x\in B : f(x,y)\leq 0 $ for all $y$ such that $(x,y) \in K \}$.
$D_1 =\{ x\in B : f(x,y)\leq 0 $ for ...[+]

44A60 ; 90C22

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Polynomial optimization methods often encompass many major scalability issues on the practical side. Fortunately, for many real-world problems, we can look at them in the eyes and exploit the inherent data structure arising from the input cost and constraints. The first part of my lecture will focus on the notion of 'correlative sparsity', occurring when there are few correlations between the variables of the input problem. The second part will present a complementary framework, where we show how to exploit a distinct notion of sparsity, called 'term sparsity', occurring when there are a small number of terms involved in the input problem by comparison with the fully dense case. At last but not least, I will present a very recently developed type of sparsity that we call 'ideal-sparsity', which exploits the presence of equality constraints. Several illustrations will be provided on important applications arising from various fields, including computer arithmetic, robustness of deep networks, quantum entanglement, optimal power-flow, and matrix factorization ranks.[-]
Polynomial optimization methods often encompass many major scalability issues on the practical side. Fortunately, for many real-world problems, we can look at them in the eyes and exploit the inherent data structure arising from the input cost and constraints. The first part of my lecture will focus on the notion of 'correlative sparsity', occurring when there are few correlations between the variables of the input problem. The second part will ...[+]

65F50 ; 90C22 ; 90C23

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Burer-Monteiro factorization is a classical heuristic used to speed up the solving of large scale semidefinite programs when the solution is expected to be low rank: One writes the solution as the product of thinner matrices, and optimizes over the (low-dimensional) factors instead of over the full matrix. Even though the factorized problem is non-convex, one observes that standard first-order algorithms can often solve it to global optimality. This has been rigorously proved by Boumal, Voroninski and Bandeira, but only under the assumption that the factorization rank is large enough, larger than what numerical experiments suggest. We will describe this result, and investigate its optimality. More specifically, we will show that, up to a minor improvement, it is optimal: without additional hypotheses on the semidefinite problem at hand, first-order algorithms can fail if the factorization rank is smaller than predicted by current theory.[-]
The Burer-Monteiro factorization is a classical heuristic used to speed up the solving of large scale semidefinite programs when the solution is expected to be low rank: One writes the solution as the product of thinner matrices, and optimizes over the (low-dimensional) factors instead of over the full matrix. Even though the factorized problem is non-convex, one observes that standard first-order algorithms can often solve it to global ...[+]

90C26 ; 90C22 ; 42C40

Sélection Signaler une erreur