En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Critères de recherche : "2022" 226 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Unicellular maps vs hyperbolic surfaces in high genus - Louf, Baptiste (Auteur de la Conférence) | CIRM H

Multi angle

In the past few years, the study of the geometric properties of random maps has been extended to a new regime, the 'high genus regime', where we are interested in maps whose size and genus tend to infinity at the same time, at the same rate.
We consider here a slightly different case, where the genus also tends to infinity, but less rapidly than the size, and we study the law of simple cycles (with a well-chosen rescaling of the graph distance) in unicellular maps (maps with one face), thanks to a powerful bijection of Chapuy, Féray and Fusy.
The interest of this work is that we obtain exactly the same law as Mirzakhani and Petri who counted closed geodesics on a model of random hyperbolic surfaces in large genus (the Weil- Petersson measure). This leads us to conjecture that these two models are somehow 'the same' in the limit.[-]
In the past few years, the study of the geometric properties of random maps has been extended to a new regime, the 'high genus regime', where we are interested in maps whose size and genus tend to infinity at the same time, at the same rate.
We consider here a slightly different case, where the genus also tends to infinity, but less rapidly than the size, and we study the law of simple cycles (with a well-chosen rescaling of the graph distance) ...[+]

05C10 ; 05C80 ; 60C05 ; 60D05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Algebraicity of polyquadratic plectic points - Gehrmann, Lennart (Auteur de la Conférence) | CIRM H

Multi angle

I will report on a plectic generalization of Stark-Heegner points. Inspired by Nekovar and Scholl's conjectures, these points are expected to control Mordell-Weil groups of higher rank elliptic curves. I will give strong evidence for this expectation in the case of polyquadratic CM fields. This is joint work with Michele Fornea.

11F41 ; 11G05 ; 11F67 ; 11G40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The SRB measure of Sinai billiard maps and flows has been studied for decades, but other equilibrium states have been investigated only recently. Assuming finite horizon, the measure of maximal entropy (MME) of the (discontinuous) map has been constructed and shown to be unique and Bernoulli (joint work with Demers, 2020), under a mild condition (believed to be generic) on the topological entropy. Demers and Korepanov have recently shown that this MME mixes at least polynomially (for H¨older observables). In spite of the continuity of the billiard flow, the mere existence of the MME for the flow has been a challenging problem. I will explain how we obtain existence, uniqueness and Bernoullicity of the MME of the Sinai billiard flow, assuming finite horizon and a mild condition (also believed to be generic), by bootstrapping on very recent work of J´erˆome Carrand about a family of equilibrium states for the billiard map. We use transfer operators acting on anisotropic Banach spaces. (Joint work with J´erˆome Carrand and Mark Demers).[-]
The SRB measure of Sinai billiard maps and flows has been studied for decades, but other equilibrium states have been investigated only recently. Assuming finite horizon, the measure of maximal entropy (MME) of the (discontinuous) map has been constructed and shown to be unique and Bernoulli (joint work with Demers, 2020), under a mild condition (believed to be generic) on the topological entropy. Demers and Korepanov have recently shown that ...[+]

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Lyapunov exponents of the Navier-Stokes equations - Blumenthal, Alex (Auteur de la Conférence) | CIRM H

Multi angle

An early motivation of smooth ergodic theory was to provide a mathematical account for the unpredictable, chaotic behavior of real-world fluids. While many interesting questions remain, in the last 25 years significant progress has been achieved in understanding models of fluid mechanics, e.g., the Navier-Stokes equations, in the presence of stochastic driving. Noise is natural for modeling purposes, and certain kinds of noise have a regularizing effect on asymptotic statistics. These kinds of noise provide an effective technical tool for rendering tractable otherwise inaccessible results on chaotic regimes, e.g., positivity of Lyapunov exponents and the presence of a strange attractor supporting a physical (SRB) measure. In this talk I will describe some of my work in this vein, including a recent result with Jacob Bedrossian and Sam Punshon-Smith providing positive Lyapunov exponents for f inite-dimensional (a.k.a. Galerkin) truncations of the Navier-Stokes equations.[-]
An early motivation of smooth ergodic theory was to provide a mathematical account for the unpredictable, chaotic behavior of real-world fluids. While many interesting questions remain, in the last 25 years significant progress has been achieved in understanding models of fluid mechanics, e.g., the Navier-Stokes equations, in the presence of stochastic driving. Noise is natural for modeling purposes, and certain kinds of noise have a re...[+]

37H15 ; 35H10 ; 37D25 ; 58J65 ; 35B65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider quasi-compact linear operator cocycles driven by an invertible ergodic process and small perturbations of this cocycle. We prove an abstract pathwise first-order formula for the leading Lyapunov multipliers. This result does not rely on random driving and applies also to sequential dynamics. We then consider the situation where the linear operator cocycle is a weighted transfer operator cocycle induced by a random map cocycle. The perturbed transfer operators are defined by the introduction of small random holes, creating a random open dynamical system. We obtain a first-order perturbation formula for the Lyapunov multipliers in this setting. Our new machinery is then deployed to create a spectral approach for a quenched extreme value theory that considers random dynamics with general ergodic invertible driving, and random observations. Further, in the setting of random piecewise expanding interval maps, we establish the existence of random equilibrium states and conditionally invariant measures for random open systems via a random perturbative approach. Finally we prove quenched statistical limit theorems for random equilibrium states arising from contracting potentials. We will illustrate the theory with some explicit examples.[-]
We consider quasi-compact linear operator cocycles driven by an invertible ergodic process and small perturbations of this cocycle. We prove an abstract pathwise first-order formula for the leading Lyapunov multipliers. This result does not rely on random driving and applies also to sequential dynamics. We then consider the situation where the linear operator cocycle is a weighted transfer operator cocycle induced by a random map cocycle. The ...[+]

37C30 ; 37E05 ; 37H99

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider stochastic models of scalable biological reaction networks in the form of continuous time pure jump Markov processes. The study of the mean field behavior of such Markov processes is a classical topic, with fundamental results going back to Kurtz, Athreya, Ney, Pemantle, etc. However, there are still questions that are not completely settled even in the case of linear reaction rates. We study two such questions. First is to characterize all possible rescaled limits for linear reaction networks. We show that there are three possibilities: a deterministic limit point, a random limit point and a random limit torus. Second is to study the mean field behavior upon the depletion of one of the materials. This is a joint work with Lai-Sang Young.[-]
We consider stochastic models of scalable biological reaction networks in the form of continuous time pure jump Markov processes. The study of the mean field behavior of such Markov processes is a classical topic, with fundamental results going back to Kurtz, Athreya, Ney, Pemantle, etc. However, there are still questions that are not completely settled even in the case of linear reaction rates. We study two such questions. First is to ...[+]

37h05 ; 60J27 ; 37N25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Irreducible lattices in semi-simple Lie groups of higher rank are not left-orderable I'll report on the problem of the left orderability of lattices in semi-simple Lie groups, and give some insight of our joint proof with Bertrand Deroin that in rank at least two, an irreducible lattice is not left-orderable. The proof will make use of the tools developed in the minicourse of Bertrand.

20F60 ; 37B05 ; 22F50 ; 37E10 ; 57R30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A complex submanifold in a complex manifold satisfies the formal principle if its formal neighborhood determines its biholomorphic germ. A smooth rational curve in a complex manifold satisfies the formal principle if its normal bundle is positive. It is unknown whether a rational curve with semi-positive normal bundle satisfies the formal principle. We discuss the simplest unknown case of a smooth rational curve in a threefold whose normal bundle is the direct sum of a trivial line bundle and a line bundle of degree 1. [-]
A complex submanifold in a complex manifold satisfies the formal principle if its formal neighborhood determines its biholomorphic germ. A smooth rational curve in a complex manifold satisfies the formal principle if its normal bundle is positive. It is unknown whether a rational curve with semi-positive normal bundle satisfies the formal principle. We discuss the simplest unknown case of a smooth rational curve in a threefold whose normal ...[+]

32K07 ; 58A15 ; 32C22

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Poisson-Lie groups and Lie bialgebras - Lecture 3 - Etingof, Pavel (Auteur de la Conférence) | CIRM H

Virtualconference

I will give an introduction to Poisson-Lie groups, Lie bialgebras and their quantization.

16T05 ; 17B62 ; 20G42

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, I will present recent results, obtained in collaboration with Laurent Ménard, about the geometry of spin clusters in Ising-decorated triangulations, and build on previously work obtained in collaboration with Laurent Ménard and Gilles Schaeffer.
In this model, triangulations are sampled together with a spin configuration on their vertices, with a probability biased by their number of monochromatic edges, via a parameter nu. The fact that there exists a combinatorial critical value for this model has been initially established in the physics literature by Kazakov and was rederived by combinatorial methods by Bousquet-Mélou and Schaeffer, and Bouttier, Di Francesco and Guitter.
Here, we give geometric evidence of that this model undergoes a phase transition by studying the volume and perimeter of its monochromatic clusters. In particular, we establish that, when nu is critical or subcritical, the cluster of the root is finite almost surely, and is infinite with positive probability for nu supercritical.[-]
In this talk, I will present recent results, obtained in collaboration with Laurent Ménard, about the geometry of spin clusters in Ising-decorated triangulations, and build on previously work obtained in collaboration with Laurent Ménard and Gilles Schaeffer.
In this model, triangulations are sampled together with a spin configuration on their vertices, with a probability biased by their number of monochromatic edges, via a parameter nu. The ...[+]

05A15 ; 05A16 ; 05C12 ; 05C30 ; 60C05 ; 60D05 ; 60K35 ; 82B44

Sélection Signaler une erreur