En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Dynamical Systems and Ordinary Differential Equations 353 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Which geodesic flows are left-handed? - Dehornoy, Pierre (Auteur de la Conférence) | CIRM H

Post-edited

Left-handed flows are 3-dimensional flows which have a particular topological property, namely that every pair of periodic orbits is negatively linked. This property (introduced by Ghys in 2007) implies the existence of as many Bikrhoff sections as possible, and therefore allows to reduce the flow to a suspension in many different ways. It then becomes natural to look for examples. A construction of Birkhoff (1917) suggests that geodesic flows are good candidates. In this conference we determine on which hyperbolic orbifolds is the geodesic flow left-handed: the answer is that yes if the surface is a sphere with three cone points, and no otherwise.
dynamical system - geodesic flow - knot - periodic orbit - global section - linking number - fibered knot[-]
Left-handed flows are 3-dimensional flows which have a particular topological property, namely that every pair of periodic orbits is negatively linked. This property (introduced by Ghys in 2007) implies the existence of as many Bikrhoff sections as possible, and therefore allows to reduce the flow to a suspension in many different ways. It then becomes natural to look for examples. A construction of Birkhoff (1917) suggests that geodesic flows ...[+]

37C27 ; 37C15 ; 37C10 ; 57M25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Theory of persistence modules is a rapidly developing field lying on the borderline between algebra, geometry and topology. It provides a very useful viewpoint at Morse theory, and at the same time is one of the cornerstones of topological data analysis. In the course I'll review foundations of this theory and focus on its applications to symplectic topology. In parts, the course is based on a recent work with Egor Shelukhin arXiv:1412.8277

37Cxx ; 37Jxx ; 53D25 ; 53D40 ; 53D42

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Multiple ergodic theorems: old and new - Lecture 1 - Kra, Bryna (Auteur de la Conférence) | CIRM H

Post-edited

The classic mean ergodic theorem has been extended in numerous ways: multiple averages, polynomial iterates, weighted averages, along with combinations of these extensions. I will give an overview of these advances and the different techniques that have been used, focusing on convergence results and what can be said about the limits.

37A05 ; 37A25 ; 37A15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Cubic surfaces in affine three space tend to have few integral points .However certain cubics such as $x^3 + y^3 + z^3 = m$, may have many such points but very little is known. We discuss these questions for Markoff type surfaces: $x^2 +y^2 +z^2 -x\cdot y\cdot z = m$ for which a (nonlinear) descent allows for a study. Specifically that of a Hasse Principle and strong approximation, together with "class numbers" and their averages for the corresponding nonlinear group of morphims of affine three space.[-]
Cubic surfaces in affine three space tend to have few integral points .However certain cubics such as $x^3 + y^3 + z^3 = m$, may have many such points but very little is known. We discuss these questions for Markoff type surfaces: $x^2 +y^2 +z^2 -x\cdot y\cdot z = m$ for which a (nonlinear) descent allows for a study. Specifically that of a Hasse Principle and strong approximation, together with "class numbers" and their averages for the ...[+]

11G05 ; 37A45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Chowla conjecture asserts that the signs of the Liouville function are distributed randomly on the integers. Reinterpreted in the language of ergodic theory this conjecture asserts that the Liouville dynamical system is a Bernoulli system. We prove that ergodicity of the Liouville system implies the Chowla conjecture. Our argument has an ergodic flavor and combines recent results in analytic number theory, finitistic and infinitary decomposition results involving uniformity norms, and equidistribution results on nilmanifolds.[-]
The Chowla conjecture asserts that the signs of the Liouville function are distributed randomly on the integers. Reinterpreted in the language of ergodic theory this conjecture asserts that the Liouville dynamical system is a Bernoulli system. We prove that ergodicity of the Liouville system implies the Chowla conjecture. Our argument has an ergodic flavor and combines recent results in analytic number theory, finitistic and infinitary ...[+]

11N60 ; 11B30 ; 11N37 ; 37A45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
After Fourier series, the quantum Hopf-Burgers equation $v_t +vv_x = 0$ with periodic boundary conditions is equivalent to a system of coupled quantum harmonic oscillators, which may be prepared in Glauber's coherent states as initial conditions. Sending the displacement of each oscillator to infinity at the same rate, we (1) confirm and (2) determine corrections to the quantum-classical correspondence principle. After diagonalizing the Hamiltonian with Schur polynomials, this is equivalent to proving (1) the concentration of profiles of Young diagrams around a limit shape and (2) their global Gaussian fluctuations for Schur measures with symbol $v : T \to R$ on the unit circle $T$. We identify the emergent objects with the push-forward along $v$ of (1) the uniform measure on $T$ and (2) $H^{1/2}$ noise on $T$. Our proofs exploit the integrability of the model as described by Nazarov-Sklyanin (2013). As time permits, we discuss structural connections to the theory of the topological recursion.[-]
After Fourier series, the quantum Hopf-Burgers equation $v_t +vv_x = 0$ with periodic boundary conditions is equivalent to a system of coupled quantum harmonic oscillators, which may be prepared in Glauber's coherent states as initial conditions. Sending the displacement of each oscillator to infinity at the same rate, we (1) confirm and (2) determine corrections to the quantum-classical correspondence principle. After diagonalizing the ...[+]

05E10 ; 20G43 ; 37K10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
I will speak about multidimensional shifts of finite type and their measures of maximal entropy. In particular, I will present results about computability of topological entropy for SFTs and measure-theoretic entropy. I'll focus on various mixing hypotheses, both topological and measure-theoretic, which imply different rates of computability for these objects, and give applications to various systems, including the hard square model, k-coloring, and iceberg model.[-]
I will speak about multidimensional shifts of finite type and their measures of maximal entropy. In particular, I will present results about computability of topological entropy for SFTs and measure-theoretic entropy. I'll focus on various mixing hypotheses, both topological and measure-theoretic, which imply different rates of computability for these objects, and give applications to various systems, including the hard square model, k-coloring, ...[+]

37B50 ; 37B10 ; 37B40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Palindromes patterns - Brlek, Srecko (Auteur de la Conférence) | CIRM H

Multi angle

The study of palindromes and their generalizations in a word has gained a lot of interest in the last 20 years, motivated by applications in physics, biology, discrete geometry, to name only a few. Using Sebastien Ferenczi as an example, we illustrate the computation of its palindromic complexity and its relation with the usual factor complexity, via an identity attributed to Brlek and Reutenauer involving also the palindromic defect. Periodic infinite words as well as the family of words with language closed by reversal also satisfy the identity. The identity remains valid when palindromic is replaced by $\sigma$-palindromic, and we also discuss some other patterns.[-]
The study of palindromes and their generalizations in a word has gained a lot of interest in the last 20 years, motivated by applications in physics, biology, discrete geometry, to name only a few. Using Sebastien Ferenczi as an example, we illustrate the computation of its palindromic complexity and its relation with the usual factor complexity, via an identity attributed to Brlek and Reutenauer involving also the palindromic defect. Periodic ...[+]

68Q45 ; 68R15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Optimal results on the improvements to Dirichlet's Theorem are obtained in the one-dimensional case. For simultaneous approximation the problem is open. I will describe reduction of the problem to dynamics both in one-dimensional case (via continued fractions) and for higher dimensions (via diagonal flows on the space of lattices). If time allows I'll mention an inhomogeneous version which is easier than the homogeneous one. Joint work with Nick Wadleigh.[-]
Optimal results on the improvements to Dirichlet's Theorem are obtained in the one-dimensional case. For simultaneous approximation the problem is open. I will describe reduction of the problem to dynamics both in one-dimensional case (via continued fractions) and for higher dimensions (via diagonal flows on the space of lattices). If time allows I'll mention an inhomogeneous version which is easier than the homogeneous one. Joint work with Nick ...[+]

22F30 ; 11J04 ; 11J70 ; 37A17

Sélection Signaler une erreur