En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Probability and Statistics 544 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Genetic differences are a critical driver of disease risk and healthy variation, across the tree of life. Mutations arise and spread in our distant, genealogical ancestors, and so genetic variation data can provide a window into our evolutionary past, allowing us to understand processes such as population size changes, admixture, natural selection, and even evolution of the mutation and recombination processes that generate the variation itself. It has long been recognised that knowledge of genealogical relationships among individuals would allow us to capture almost all the information available from such data. However, only in recent years has it become computationally feasible to infer such genealogies, genome-wide, from variation patterns. One such method, Relate, developed in our lab, allows approximate inference of genealogical trees under coalescent-like models, for up to tens of thousands of samples. Here, we will show that a powerful approach for inference is to identify and characterise departures from the relatively simple models used to build these trees. By defining a 'population' as a set of coalescence rates between labelled individuals backwards in time, we can uncover variability in these rates, and use a single collection of trees to identify ancient mixing events among populations - including 'ghost' groups we have never sampled - natural selection favouring the descendents of particular branches of the genealogy, and departures from mathematical expectations under clock-like behaviour, indicating disruption of recombination or mutation.[-]
Genetic differences are a critical driver of disease risk and healthy variation, across the tree of life. Mutations arise and spread in our distant, genealogical ancestors, and so genetic variation data can provide a window into our evolutionary past, allowing us to understand processes such as population size changes, admixture, natural selection, and even evolution of the mutation and recombination processes that generate the variation itself. ...[+]

92D15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Consider two ancestral lineages sampled from a system of two-dimensional branching random walks with logistic regulation in the stationary regime. We study the asymptotics of their coalescence time for large initial separation and find that it agrees with well known results for a suitably scaled two-dimensional stepping stone model and also with Malécot's continuous-space approximation for the probability of identity by descent as a function of sampling distance.
This can be viewed as a justification for the replacement of locally fluctuating population sizes by fixed effective sizes. Our main tool is a joint regeneration construction for the spatial embeddings of the two ancestral lineages.[-]
Consider two ancestral lineages sampled from a system of two-dimensional branching random walks with logistic regulation in the stationary regime. We study the asymptotics of their coalescence time for large initial separation and find that it agrees with well known results for a suitably scaled two-dimensional stepping stone model and also with Malécot's continuous-space approximation for the probability of identity by descent as a function of ...[+]

60K35 ; 92D25 ; 92D10 ; 60F05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider a population model in which the season alternates between winter and summer, and individuals can acquire mutations either that are advantageous in the summer and disadvantageous in the winter, or vice versa. Also, we assume that individuals in the population can either be active or dormant, and that individuals can move between these two states. Dormant individuals do not reproduce but do not experience selective pressures. We show that, under certain conditions, over time we see two waves of adaptation. Some individuals repeatedly acquire mutations that are beneficial in the summer, while others repeatedly acquire mutations that are beneficial in the winter. Individuals can survive the season during which they are less fit by entering a dormant state. This result suggests that, for populations in fluctuating environments, dormancy may have the potential to induce speciation. This is joint work with Fernando Cordero and Adrian Gonzalez Casanova.[-]
We consider a population model in which the season alternates between winter and summer, and individuals can acquire mutations either that are advantageous in the summer and disadvantageous in the winter, or vice versa. Also, we assume that individuals in the population can either be active or dormant, and that individuals can move between these two states. Dormant individuals do not reproduce but do not experience selective pressures. We show ...[+]

92D25 ; 92D15 ; 60J85

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Spectrum of random quantum channels - Lancien, Cécilia (Auteur de la Conférence) | CIRM H

Multi angle

The main question that we will investigate in this talk is: what does the spectrum of a quantum channel typically looks like? We will see that a wide class of random quantum channels generically exhibit a large spectral gap between their first and second largest eigenvalues. This is in close analogy with what is observed classically, i.e. for the spectral gap of transition matrices associated to random graphs. In both the classical and quantum settings, results of this kind are interesting because they provide examples of so-called expanders, i.e. dynamics that are converging fast to equilibrium despite their low connectivity. We will also present implications in terms of typical decay of correlations in 1D many-body quantum systems. If time allows, we will say a few words about ongoing investigations of the full spectral distribution of random quantum channels. This talk will be based on: arXiv:1906.11682 (with D. Perez-Garcia), arXiv:2302.07772 (with P. Youssef) and arXiv:2311.12368 (with P. Oliveira Santos and P. Youssef).[-]
The main question that we will investigate in this talk is: what does the spectrum of a quantum channel typically looks like? We will see that a wide class of random quantum channels generically exhibit a large spectral gap between their first and second largest eigenvalues. This is in close analogy with what is observed classically, i.e. for the spectral gap of transition matrices associated to random graphs. In both the classical and quantum ...[+]

81P45 ; 81P47 ; 60B20 ; 15B52

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We investigate the mean-field limit of large networks of interacting biological neurons. The neurons are represented by the so-called integrate and fire models that follow the membrane potential of each neuron and captures individual spikes. However we do not assume any structure on the graph of interactions but consider instead any connection weights between neurons that obey a generic mean-field scaling. We are able to extend the concept of extended graphons, introduced in Jabin-Poyato-Soler, by introducing a novel notion of discrete observables in the system. This is a joint work with D. Zhou.[-]
We investigate the mean-field limit of large networks of interacting biological neurons. The neurons are represented by the so-called integrate and fire models that follow the membrane potential of each neuron and captures individual spikes. However we do not assume any structure on the graph of interactions but consider instead any connection weights between neurons that obey a generic mean-field scaling. We are able to extend the concept of ...[+]

35Q49 ; 35Q83 ; 35R02 ; 35Q70 ; 05C90 ; 60G09 ; 35R06 ; 35Q89 ; 49N80 ; 92B20 ; 65N75 ; 65N75

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
One of the most important question in Quantum Information Theory was to figure out whether the so-called Minimum Output Entropy (MOE) was additive. In this talk I will start by defining the counter-example originally built by Belinschi, Collins and Nechita. Then I will explain how with the help of a novel strategy, we managed with Collins to compute concentration estimate on the probability that the MOE is non-additive and how it yielded some explicit bounds for the dimension of spaces where violation of the MOE occurs. Finally, I will talk more in detail about this novel strategy which consists in interpolating random matrices and free operators with the help of free stochastic calculus.[-]
One of the most important question in Quantum Information Theory was to figure out whether the so-called Minimum Output Entropy (MOE) was additive. In this talk I will start by defining the counter-example originally built by Belinschi, Collins and Nechita. Then I will explain how with the help of a novel strategy, we managed with Collins to compute concentration estimate on the probability that the MOE is non-additive and how it yielded some ...[+]

60B20 ; 46L54 ; 52A22 ; 94A17

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random walks on groups - part 2 - Aoun, Richard (Auteur de la Conférence) | CIRM H

Multi angle

Random walks is a topic at the crossroads of probability, ergodic theory, potential theory, harmonic analysis, geometry, and graph theory. Its roots can be traced back to the famous article by Pólya in 1921, which characterizes the recurrence of random walks on $\mathbb{Z}^{d}$ in terms of the dimension $d$. When random walks take place on a group, or more generally on a homogeneous space, it provides an even richer framework for study. From a probabilistic point of view, this additional structure serves as an extra tool, facilitating the study of the behaviour of the random walk on the underlying space. Regarding groups and their actions, random walks offer a means to explore generic or non-generic parts of groups and, at times, even to demonstrate intrinsic geometric properties, as is clearly shown by Kesten's amenability criterion (1959). This is an introductory course on the topic. Emphasis will be given on the interplay between probability and the structure of the group. The course will also provide insights into current research questions. Here is an outline of each session :
(1) Equivalent of Pólya's criterion for random walks on groups and rigidity theorems : does walking randomly on a given group in two different ways affect the recurrence of the walks ?
(2) Kesten's probabilistic criterion of the amenability of a finitely generated group ; defined in this course in terms of isoperimetric profile. The tools in 1) and 2) are essentially coming from analysis on groups.
(3) Tools coming from subadditivity to study the behaviour of a random walk on a group (drift, entropy and expansion of the random walk, etc.)[-]
Random walks is a topic at the crossroads of probability, ergodic theory, potential theory, harmonic analysis, geometry, and graph theory. Its roots can be traced back to the famous article by Pólya in 1921, which characterizes the recurrence of random walks on $\mathbb{Z}^{d}$ in terms of the dimension $d$. When random walks take place on a group, or more generally on a homogeneous space, it provides an even richer framework for study. From a ...[+]

20P05 ; 60G50 ; 20F65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random walks on groups - part 3 - Aoun, Richard (Auteur de la Conférence) | CIRM H

Multi angle

Random walks is a topic at the crossroads of probability, ergodic theory, potential theory, harmonic analysis, geometry, and graph theory. Its roots can be traced back to the famous article by Pólya in 1921, which characterizes the recurrence of random walks on $\mathbb{Z}^{d}$ in terms of the dimension $d$. When random walks take place on a group, or more generally on a homogeneous space, it provides an even richer framework for study. From a probabilistic point of view, this additional structure serves as an extra tool, facilitating the study of the behaviour of the random walk on the underlying space. Regarding groups and their actions, random walks offer a means to explore generic or non-generic parts of groups and, at times, even to demonstrate intrinsic geometric properties, as is clearly shown by Kesten's amenability criterion (1959). This is an introductory course on the topic. Emphasis will be given on the interplay between probability and the structure of the group. The course will also provide insights into current research questions. Here is an outline of each session :
(1) Equivalent of Pólya's criterion for random walks on groups and rigidity theorems : does walking randomly on a given group in two different ways affect the recurrence of the walks ?
(2) Kesten's probabilistic criterion of the amenability of a finitely generated group ; defined in this course in terms of isoperimetric profile. The tools in 1) and 2) are essentially coming from analysis on groups.
(3) Tools coming from subadditivity to study the behaviour of a random walk on a group (drift, entropy and expansion of the random walk, etc.)[-]
Random walks is a topic at the crossroads of probability, ergodic theory, potential theory, harmonic analysis, geometry, and graph theory. Its roots can be traced back to the famous article by Pólya in 1921, which characterizes the recurrence of random walks on $\mathbb{Z}^{d}$ in terms of the dimension $d$. When random walks take place on a group, or more generally on a homogeneous space, it provides an even richer framework for study. From a ...[+]

20P05 ; 60G50 ; 20F65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This talk will focus on the fluctuations of a linear spectral statistic around its mean for $P\left(W_N, D_N\right)$ where $P$ is a polynomial, $W_N$ a Wigner matrix and $D_N$ a deterministic diagonal matrix. I will first consider the case when $P\left(W_N,D_N\right)=W_N+D_N$, based on a joint work with M. Février (U. Paris-Saclay). In the general case of $P$ a selfadjoint noncommutative polynomial, I will present results for the special case of the Stieltjes transform, based on a joint work with S. Belinschi (CNRS, U. Toulouse), M. Capitaine (CNRS,U. Toulouse) and M. Février (U. Paris-Saclay).[-]
This talk will focus on the fluctuations of a linear spectral statistic around its mean for $P\left(W_N, D_N\right)$ where $P$ is a polynomial, $W_N$ a Wigner matrix and $D_N$ a deterministic diagonal matrix. I will first consider the case when $P\left(W_N,D_N\right)=W_N+D_N$, based on a joint work with M. Février (U. Paris-Saclay). In the general case of $P$ a selfadjoint noncommutative polynomial, I will present results for the special case of ...[+]

60B20 ; 15B52 ; 60F05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will present a recent amazing new approach to norm convergence of random matrices due to Chen, Garza Vargas, Tropp, and van Handel, and the way Michael Magee and I apply and expand it, together with fine topological expansion, to obtain norm convergence for random matrix models coming from representations of SU(n) of quasi-exponential dimension.

15A52 ; 46L54 ; 46L05

Sélection Signaler une erreur