En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

2014 - Sem 1 - Shparlinski - Kohel 30 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We discuss the distribution of the trace of a random matrix in the compact Lie group USp2g, with the normalized Haar measure. According to the generalized Sato-Tate conjecture, if A is an abelian variety of dimension g defined over the rationals, the sequence of traces of Frobenius in the successive reductions of A modulo primes appears to be equidistributed with respect to this distribution. If g = 2, we provide expressions for the characteristic function, the density, and the repartition function of this distribution in terms of higher transcendental functions, namely Legendre and Meijer functions.[-]
We discuss the distribution of the trace of a random matrix in the compact Lie group USp2g, with the normalized Haar measure. According to the generalized Sato-Tate conjecture, if A is an abelian variety of dimension g defined over the rationals, the sequence of traces of Frobenius in the successive reductions of A modulo primes appears to be equidistributed with respect to this distribution. If g = 2, we provide expressions for the cha...[+]

11G05 ; 11G10 ; 14G10 ; 37C30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Interview at CIRM: Igor Shparlinski - Shparlinski, Igor (Personne interviewée) | CIRM H

Post-edited

Igor Shparlinski held the Jean Morlet Chair from February 2014 to August 2014. This chair was linked in parts to the thematic month on 'Arithmetics' which took part in February 2014 at CIRM. Igor Shparlinski has a career in Number theory and its applications to cryptography, with significant overlap with the research interests of the groups Dynamique Arithmétique, Combinatoire (DAC) and Arithmétique et Théorie de l'Information (ATI) in Marseille. The idea was to start the month with a week on 'Unlikely Intersections' followed by a workshop organized by members of the DAC research group. Weeks 3 and 4 were on 'Frobenius distributions' and were co-organized with the ATI group. The focus was to introduce and explore new directions of research around the proof of the Sato-Tate conjecture, its generalizations, and the related Lang-Trotter conjecture. Continuing the progression to the interactions of arithmetics with geometry, the thematic month closed with a week on the topic 'On the Conjectures of Lang and Volta'.
CIRM - Chaire Jean-Morlet 2014 - Aix-Marseille Université[-]
Igor Shparlinski held the Jean Morlet Chair from February 2014 to August 2014. This chair was linked in parts to the thematic month on 'Arithmetics' which took part in February 2014 at CIRM. Igor Shparlinski has a career in Number theory and its applications to cryptography, with significant overlap with the research interests of the groups Dynamique Arithmétique, Combinatoire (DAC) and Arithmétique et Théorie de l'Information (ATI) in ...[+]

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Moment sequences of Sato-Tate groups - Sutherland, Andrew (Auteur de la Conférence) | CIRM H

Single angle

Moment sequences as a tool for identifying and classifying Sato-Tate distributions. Computing moment sequences of Sato-Tate groups, Weyl integration formulas, comparing moment statistics, distinguishing exceptional distributions with additional statistics.
Sato-Tate - Abelian surfaces - Abelian threefolds - hyperelliptic curves

11M50 ; 11G10 ; 11G20 ; 14G10 ; 14K15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Computing Sato-Tate statistics - Sutherland, Andrew (Auteur de la Conférence) | CIRM H

Single angle

Survey of methods for computing zeta functions of low genus curves, including generic group algorithms, p-adic cohomology, CRT-based methods (Schoof-Pila), and recent average polynomial-time algorithms.
Sato-Tate - Abelian surfaces - Abelian threefolds - hyperelliptic curves

11Y16 ; 11G10 ; 11G20 ; 14G10 ; 14K15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include studying the group structure, arithmetic structure of the number of points (primality, smoothness, etc.) and certain divisibility conditions.
These questions are related to such celebrated problems as Lang-Trotter and Sato-Tate conjectures. More recently the interest to these questions was re-fueled by the needs of pairing based cryptography.
In a series of talks we will describe the state of art in some of these directions, demonstrate the richness of underlying mathematics and pose some open questions.
CIRM - Chaire Jean-Morlet 2014 - Aix-Marseille Université[-]
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include ...[+]

11G20 ; 14G15 ; 14H52

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include studying the group structure, arithmetic structure of the number of points (primality, smoothness, etc.) and certain divisibility conditions.
These questions are related to such celebrated problems as Lang-Trotter and Sato-Tate conjectures. More recently the interest to these questions was re-fueled by the needs of pairing based cryptography.
In a series of talks we will describe the state of art in some of these directions, demonstrate the richness of underlying mathematics and pose some open questions.
CIRM - Chaire Jean-Morlet 2014 - Aix-Marseille Université[-]
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include ...[+]

11G20 ; 14G15 ; 14H52

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include studying the group structure, arithmetic structure of the number of points (primality, smoothness, etc.) and certain divisibility conditions.
These questions are related to such celebrated problems as Lang-Trotter and Sato-Tate conjectures. More recently the interest to these questions was re-fueled by the needs of pairing based cryptography.
In a series of talks we will describe the state of art in some of these directions, demonstrate the richness of underlying mathematics and pose some open questions.
CIRM - Chaire Jean-Morlet 2014 - Aix-Marseille Université[-]
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include ...[+]

11G20 ; 14G15 ; 14H52

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Distributions of Frobenius of elliptic curves #6 - Jones, Nathan (Auteur de la Conférence) | CIRM H

Single angle

In the 1970s, S. Lang and H. Trotter developed a probabilistic model which led them to their conjectures on distributional aspects of Frobenius in $GL_2$-extensions. These conjectures, which are still open, have been a significant source of stimulation for modern research in arithmetic geometry. The present lectures will provide a detailed exposition of the Lang-Trotter conjectures, as well as a partial survey of some known results.

Various questions in number theory may be viewed in probabilistic terms. For instance, consider the prime number theorem, which states that, as $x\rightarrow \infty$ , one has
$\#\left \{ primes\, p\leq x \right \}\sim \frac{x}{\log x}$
This may be seen as saying that the heuristic "probability" that a number $p$ is prime is about $1/\log p$. This viewpoint immediately predicts the correct order of magnitude for the twin prime conjecture. Indeed, if $p$ and $p+2$ are seen as two randomly chosen numbers of size around $t$, then the probability that they are both prime should be about $1/(\log t)^2$, which predicts that
$\#\left \{ primes\, p\leq x : p+2\, is\, also\, prime \right \}\asymp \int_{2}^{x}\frac{1}{(\log t)^2}dt \sim \frac{x}{\log x}$
In this naive heuristic, the events "$p$  is prime" and "$p+2$ is prime" have been treated as independent, which they are not (for instance their reductions modulo 2 are certainly not independent). Using more careful probabilistic reasoning, one can correct this and arrive at the precise conjecture
$\#\left \{ primes\, p\leq x : p+2\, is\, also\, prime \right \} \sim C_{twin}\frac{x}{(\log x)^2}$,
where $C_{twin}$  is the constant of Hardy-Littlewood.
In these lectures, we will use probabilistic considerations to study statistics of data attached to elliptic curves. Specifically, fix an elliptic curve $E$  over $\mathbb{Q}$ of conductor $N_E$. For a prime $p$ of good reduction, theFrobenius trace $a_p(E)$ and Weil $p$-root $\pi _p(E)\in \mathbb{C}$ satisfy the relations
$\#E(\mathbb{F}_p)=p+1-a_p(E)$,
$X^2-a_p(E)X+p=(X-\pi _p(E))(X-\overline{ \pi _p(E)})$.
Because of their connection via the Birch and Swinnerton-Dyer conjecture to ranks of elliptic curves (amongother reasons), there is general interest in understanding the statistical variation of the numbers $a_p(E)$ and $\pi_p(E)$, as $p$ varies over primes of good reduction for E. In their 1976 monograph, Lang and Trotter considered the following two fundamental counting functions:
$\pi_{E,r}(x) :=\#\left \{ primes\: p\leq x:p \nmid N_E, a_p(E)=r \right \}$
$\pi_{E,K}(x) :=\#\left \{ primes\: p\leq x:p \nmid N_E, \mathbb{Q}(\pi_p(E))=K \right \}$,
where $ r \in \mathbb{Z}$ is a fixed integer, $K$ is a fixed imaginary quadratic field. We will discuss their probabilistic model, which incorporates both the Chebotarev theorem for the division fields of $E$ and the Sato-Tatedistribution, leading to the precise (conjectural) asymptotic formulas
(1) $\pi_{E,r}(x)\sim C_{E,r}\frac{\sqrt{x}}{\log x}$
$\pi_{E,K}(x)\sim C_{E,K}\frac{\sqrt{x}}{\log x}$,
with explicit constants$C_{E,r}\geq 0$ and $C_{E,K} > 0$. We will also discuss heuristics leading to the conjectureof Koblitz on the primality of $\#E( \mathbb{F}_p)$, and of Jones, which combines these with the model of Lang-Trotter for $\pi_{E,r}(x)$ in order to count amicable pairs and aliquot cycles for elliptic curves as introduced by Silvermanand Stange.
The above-mentioned conjectures are all open, although (in addition to the bounds mentioned in the previous section) there are various average results which give evidence of their validity. For instance, let $R\geq 1$ and $S\geq 1$be an arbitrary positive length andwidth, respectively, and define
$\mathcal{F}(R,S):= \{ E_{r,s}:(r,s)\in \mathbb{Z}^2,-16(4r^3+27s^2)\neq 0, \left | r \right |\leq R\: $ and $\left | s \right | \leq S \}$,
where $E_{r,s}$ denotes the curve with equation $y^2=x^3+rx=s$. The work of Fouvry and Murty $(r=0)$, and of David and Pappalardi $(r\neq 0)$, shows that, provided min $\left \{ R(x), S(x) \right \}\geq x^{1+\varepsilon }$, one has
(2) $\frac{1}{\left |\mathcal{F}(R(x),S(x)) \right |} \sum_{E\in \mathcal{F}(R(x),S(x))} \pi_{E,r}(x) \sim C_r \frac{\sqrt{x}}{\log x}$
where $C_r$ is a constant. We will survey this and other theorems on average, and then discuss the nature of the associated constants $C_{E,r},C_{E,K}$ etc. We will discuss the statistical variation of these constants as $E$ varies over all elliptic curves over $\mathbb{Q}$, and use this to confirm the consistency of (2) with (1), on the level of the constants


Keywords : Galois representation - elliptic curve - trace of Frobenius - Chebotarev density theorem - Sato-Tate conjecture - Lang-Trotter conjecture[-]
In the 1970s, S. Lang and H. Trotter developed a probabilistic model which led them to their conjectures on distributional aspects of Frobenius in $GL_2$-extensions. These conjectures, which are still open, have been a significant source of stimulation for modern research in arithmetic geometry. The present lectures will provide a detailed exposition of the Lang-Trotter conjectures, as well as a partial survey of some known results.

Various ...[+]

11G05 ; 11R44

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Sato-Tate axioms - Fité, Francesc (Auteur de la Conférence) | CIRM H

Single angle

This series of three talks is the first part of an introductory course on the generalized Sato-Tate conjecture, made in collaboration with Andrew V. Sutherland at the Winter School "Frobenius distributions on curves", celebrated in Luminy in February 2014. In the first talk, some general background following Serre's works is introduced: equidistribution and its connexion to L-functions, the Sato-Tate group and the Sato-Tate conjecture. In the second talk, we present the Sato-Tate axiomatic, which leads us to some Lie group theoretic classification results. The last part of the talk is devoted to illustrate the methods involved in the proof of this kind of results by considering a concrete example. In the third and final talk, we present Banaszak and Kedlaya's algebraic version of the Sato-Tate conjecture, we describe the notion of Galois type of an abelian variety, and we establish the dictionary between Galois types and Sato-Tate groups of abelian surfaces defined over number fields.
generalized Sato-Tate conjecture - Sato-Tate group - equidistribution - Sato-Tate axioms - Galois type - Abelian surfaces - endomorphism algebra - Frobenius distributions[-]
This series of three talks is the first part of an introductory course on the generalized Sato-Tate conjecture, made in collaboration with Andrew V. Sutherland at the Winter School "Frobenius distributions on curves", celebrated in Luminy in February 2014. In the first talk, some general background following Serre's works is introduced: equidistribution and its connexion to L-functions, the Sato-Tate group and the Sato-Tate conjecture. In the ...[+]

11M50 ; 11G10 ; 14G10 ; 14K15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Hilbert cubes in arithmetic sets - Elsholtz, Christian (Auteur de la Conférence) | CIRM H

Single angle

Let $S$ be a multiplicatively defined set. Ostmann conjectured, that the set of primes cannot be (nontrivially) written as a sumset $P\sim A+B$ (even in an asymptotic sense, when finitely many deviations are allowed). The author had previously proved that there is no such ternary sumset $P\sim A+B+C$ (with $ \left |A \right |,\left |B \right |,\left |C \right |\geq 2$). More generally, in recent work we showed (with A. Harper) for certain multiplicatively defined sets $S$, namely those which can be treated by sieves, or those with some equidistribution condition of Bombieri-Vinogradov type, that again there is no (nontrivial) ternary decomposition $P\sim A+B+C$. As this covers the case of smooth numbers, this settles a conjecture of A.Sárközy.
Joint work with Adam J. Harper.[-]
Let $S$ be a multiplicatively defined set. Ostmann conjectured, that the set of primes cannot be (nontrivially) written as a sumset $P\sim A+B$ (even in an asymptotic sense, when finitely many deviations are allowed). The author had previously proved that there is no such ternary sumset $P\sim A+B+C$ (with $ \left |A \right |,\left |B \right |,\left |C \right |\geq 2$). More generally, in recent work we showed (with A. Harper) for certain ...[+]

11-XX ; 05-XX

Sélection Signaler une erreur