En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14H52 16 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Grothendieck-Knudsen moduli space of stable rational curves n markings is arguably one of the simplest moduli spaces: it is a smooth projective variety that can be described explicitly as a blow-up of projective space, with strata corresponding to nodal curves similar to the torus invariant strata of a toric variety. Conjecturally, its Mori cone of curves is generated by strata, but this is known only for n up to 7. In contrast, the cones of effective divisors are not f initely generated, in all characteristics, when n is at least 10. After a general introduction to these topics, I will discuss what we call elliptic pairs and LangTrotter polygons, relating the question of finite generation of effective cones of blow-ups of certain toric surfaces to the arithmetic of elliptic curves. These lectures are based on joint work with Antonio Laface, Jenia Tevelev and Luca Ugaglia.[-]
The Grothendieck-Knudsen moduli space of stable rational curves n markings is arguably one of the simplest moduli spaces: it is a smooth projective variety that can be described explicitly as a blow-up of projective space, with strata corresponding to nodal curves similar to the torus invariant strata of a toric variety. Conjecturally, its Mori cone of curves is generated by strata, but this is known only for n up to 7. In contrast, the cones of ...[+]

14C20 ; 14M25 ; 14E30 ; 14H10 ; 14H52

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Grothendieck-Knudsen moduli space of stable rational curves n markings is arguably one of the simplest moduli spaces: it is a smooth projective variety that can be described explicitly as a blow-up of projective space, with strata corresponding to nodal curves similar to the torus invariant strata of a toric variety. Conjecturally, its Mori cone of curves is generated by strata, but this is known only for n up to 7. In contrast, the cones of effective divisors are not f initely generated, in all characteristics, when n is at least 10. After a general introduction to these topics, I will discuss what we call elliptic pairs and LangTrotter polygons, relating the question of finite generation of effective cones of blow-ups of certain toric surfaces to the arithmetic of elliptic curves. These lectures are based on joint work with Antonio Laface, Jenia Tevelev and Luca Ugaglia.[-]
The Grothendieck-Knudsen moduli space of stable rational curves n markings is arguably one of the simplest moduli spaces: it is a smooth projective variety that can be described explicitly as a blow-up of projective space, with strata corresponding to nodal curves similar to the torus invariant strata of a toric variety. Conjecturally, its Mori cone of curves is generated by strata, but this is known only for n up to 7. In contrast, the cones of ...[+]

14C20 ; 14M25 ; 14E30 ; 14H10 ; 14H52

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Grothendieck-Knudsen moduli space of stable rational curves n markings is arguably one of the simplest moduli spaces: it is a smooth projective variety that can be described explicitly as a blow-up of projective space, with strata corresponding to nodal curves similar to the torus invariant strata of a toric variety. Conjecturally, its Mori cone of curves is generated by strata, but this is known only for n up to 7. In contrast, the cones of effective divisors are not f initely generated, in all characteristics, when n is at least 10. After a general introduction to these topics, I will discuss what we call elliptic pairs and LangTrotter polygons, relating the question of finite generation of effective cones of blow-ups of certain toric surfaces to the arithmetic of elliptic curves. These lectures are based on joint work with Antonio Laface, Jenia Tevelev and Luca Ugaglia.[-]
The Grothendieck-Knudsen moduli space of stable rational curves n markings is arguably one of the simplest moduli spaces: it is a smooth projective variety that can be described explicitly as a blow-up of projective space, with strata corresponding to nodal curves similar to the torus invariant strata of a toric variety. Conjecturally, its Mori cone of curves is generated by strata, but this is known only for n up to 7. In contrast, the cones of ...[+]

14C20 ; 14M25 ; 14E30 ; 14H10 ; 14H52

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Supersingular elliptic curve isogeny graphs have isomorphism classes of supersingular elliptic curves over a finite field as their vertices and isogenies of some fixed degree between them as their edges. Due to their apparent "random" nature, supersingular isogeny graphs - which are optimal expander graphs - have been used as a setting for certain cryptographic schemes that are resistant to attacks by quantum computers. Hidden structures in these graphs may have implications to the security of these systems. In this talk, we analyze a number of graph theoretic structural properties of supersingular isogeny graphs over a finite field $\mathbb{F}_{p^2}$ and their subgraphs induced by the vertices defined over $\mathbb{F}_p$. This is joint work with Sarah Arpin (Virginia Tech) and our jointly supervised undergraduate student Taha Hedayat (University of Calgary).[-]
Supersingular elliptic curve isogeny graphs have isomorphism classes of supersingular elliptic curves over a finite field as their vertices and isogenies of some fixed degree between them as their edges. Due to their apparent "random" nature, supersingular isogeny graphs - which are optimal expander graphs - have been used as a setting for certain cryptographic schemes that are resistant to attacks by quantum computers. Hidden structures in ...[+]

14H52 ; 11G20 ; 11-04 ; 05C40 ; 11-11

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include studying the group structure, arithmetic structure of the number of points (primality, smoothness, etc.) and certain divisibility conditions.
These questions are related to such celebrated problems as Lang-Trotter and Sato-Tate conjectures. More recently the interest to these questions was re-fueled by the needs of pairing based cryptography.
In a series of talks we will describe the state of art in some of these directions, demonstrate the richness of underlying mathematics and pose some open questions.
CIRM - Chaire Jean-Morlet 2014 - Aix-Marseille Université[-]
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include ...[+]

11G20 ; 14G15 ; 14H52

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include studying the group structure, arithmetic structure of the number of points (primality, smoothness, etc.) and certain divisibility conditions.
These questions are related to such celebrated problems as Lang-Trotter and Sato-Tate conjectures. More recently the interest to these questions was re-fueled by the needs of pairing based cryptography.
In a series of talks we will describe the state of art in some of these directions, demonstrate the richness of underlying mathematics and pose some open questions.
CIRM - Chaire Jean-Morlet 2014 - Aix-Marseille Université[-]
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include ...[+]

11G20 ; 14G15 ; 14H52

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include studying the group structure, arithmetic structure of the number of points (primality, smoothness, etc.) and certain divisibility conditions.
These questions are related to such celebrated problems as Lang-Trotter and Sato-Tate conjectures. More recently the interest to these questions was re-fueled by the needs of pairing based cryptography.
In a series of talks we will describe the state of art in some of these directions, demonstrate the richness of underlying mathematics and pose some open questions.
CIRM - Chaire Jean-Morlet 2014 - Aix-Marseille Université[-]
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include ...[+]

11G20 ; 14G15 ; 14H52

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Après avoir expliqué la notion de Z-invariance pour les modèles de mécanique statistique, nous introduisons une famille à un paramètre (dépendant du module elliptique) de Laplaciens massiques Z-invariants définis sur les graphes isoradiaux. Nous démontrons une formule explicite pour son inverse, la fonction de Green massique, qui a la propriété remarquable de ne dépendre que de la géométrie locale du graphe. Nous expliquerons les conséquences de ce résultat pour le modèle des forêts couvrantes, en particulier la preuve d'une transition de phase d'ordre 2 avec le modèle des arbre couvrants critiques sur les graphes isoradiaux, introduit par Kenyon. Finalement, nous considérons la courbe spectrale de ce Laplacien massique et montrons qu'il s'agit d'une courbe de Harnack de genre 1.
Il s'agit d'un travail en collaboration avec Cédric Boutillier et Kilian Raschel.[-]
Après avoir expliqué la notion de Z-invariance pour les modèles de mécanique statistique, nous introduisons une famille à un paramètre (dépendant du module elliptique) de Laplaciens massiques Z-invariants définis sur les graphes isoradiaux. Nous démontrons une formule explicite pour son inverse, la fonction de Green massique, qui a la propriété remarquable de ne dépendre que de la géométrie locale du graphe. Nous expliquerons les conséquences de ...[+]

82B20 ; 82B23 ; 82B41 ; 14H52 ; 14H70

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
We present heuristics that suggest that there is a uniform bound on the rank of $E(\mathbb{Q})$ as $E$ varies over all elliptic curves over $\mathbb{Q}$. This is joint work with Jennifer Park, John Voight, and Melanie Matchett Wood.

11R29 ; 11G40 ; 11G05 ; 14H52 ; 11R45

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This talk will be a survey of recent results and methods used in the classification of torsion subgroups of elliptic curves over finite and infinite extensions of the rationals, and over function fields.

11G05 ; 11R21 ; 12F10 ; 14H52

Bookmarks Report an error