En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14G15 13 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The classical Brauer-Siegel theorem can be seen as one of the first instances of description of asymptotical arithmetic: it states that, for a family of number fields $K_i$, under mild conditions (e.g. bounded degree), the product of the regulator by the class number behaves asymptotically like the square root of the discriminant.
This can be reformulated as saying that the Brauer-Siegel ratio log($hR$)/ log$\sqrt{D}$ has limit 1.
Even if some of the fundamental problems like the existence or non-existence of Siegel zeroes remains unsolved, several generalisations and analog have been developed: Tsfasman-Vladuts, Kunyavskii-Tsfasman, Lebacque-Zykin, Hindry-Pacheco and lately Griffon. These analogues deal with number fields for which the limit is different from 1 or with elliptic curves and abelian varieties either for a fixed variety and varying field or over a fixed field with a family of varieties.[-]
The classical Brauer-Siegel theorem can be seen as one of the first instances of description of asymptotical arithmetic: it states that, for a family of number fields $K_i$, under mild conditions (e.g. bounded degree), the product of the regulator by the class number behaves asymptotically like the square root of the discriminant.
This can be reformulated as saying that the Brauer-Siegel ratio log($hR$)/ log$\sqrt{D}$ has limit 1.
Even if some ...[+]

11G25 ; 14G15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include studying the group structure, arithmetic structure of the number of points (primality, smoothness, etc.) and certain divisibility conditions.
These questions are related to such celebrated problems as Lang-Trotter and Sato-Tate conjectures. More recently the interest to these questions was re-fueled by the needs of pairing based cryptography.
In a series of talks we will describe the state of art in some of these directions, demonstrate the richness of underlying mathematics and pose some open questions.
CIRM - Chaire Jean-Morlet 2014 - Aix-Marseille Université[-]
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include ...[+]

11G20 ; 14G15 ; 14H52

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include studying the group structure, arithmetic structure of the number of points (primality, smoothness, etc.) and certain divisibility conditions.
These questions are related to such celebrated problems as Lang-Trotter and Sato-Tate conjectures. More recently the interest to these questions was re-fueled by the needs of pairing based cryptography.
In a series of talks we will describe the state of art in some of these directions, demonstrate the richness of underlying mathematics and pose some open questions.
CIRM - Chaire Jean-Morlet 2014 - Aix-Marseille Université[-]
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include ...[+]

11G20 ; 14G15 ; 14H52

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include studying the group structure, arithmetic structure of the number of points (primality, smoothness, etc.) and certain divisibility conditions.
These questions are related to such celebrated problems as Lang-Trotter and Sato-Tate conjectures. More recently the interest to these questions was re-fueled by the needs of pairing based cryptography.
In a series of talks we will describe the state of art in some of these directions, demonstrate the richness of underlying mathematics and pose some open questions.
CIRM - Chaire Jean-Morlet 2014 - Aix-Marseille Université[-]
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include ...[+]

11G20 ; 14G15 ; 14H52

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Soit $k$ un corps fini à $q$ éléments. On s'intéresse aux Frobenius des variétés abéliennes sur $k$ de dimension tendant vers l'infini. Chacune donne une mesure discrète sur le segment $I=\left [ -2\sqrt{q},2\sqrt{q} \right ]$. On désire décrire les mesures sur $I$ qui sont des limites de celles-là. On verra qu'une telle mesure se décompose en somme d'une partie discrète évidente et d'une partie continue non évidente (son support peut être, par exemple, un ensemble de Cantor). Ingrédients: la notion de capacité logarithmique et les résultats de R.M. Robinson sur les entiers algébriques totalement réels.[-]
Soit $k$ un corps fini à $q$ éléments. On s'intéresse aux Frobenius des variétés abéliennes sur $k$ de dimension tendant vers l'infini. Chacune donne une mesure discrète sur le segment $I=\left [ -2\sqrt{q},2\sqrt{q} \right ]$. On désire décrire les mesures sur $I$ qui sont des limites de celles-là. On verra qu'une telle mesure se décompose en somme d'une partie discrète évidente et d'une partie continue non évidente (son support peut être, par ...[+]

11G10 ; 14G15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Algebraic cycles on varieties over finite fields - Pirutka, Alena (Auteur de la Conférence) | CIRM H

Post-edited

Let $X$ be a projective variety over a field $k$. Chow groups are defined as the quotient of a free group generated by irreducible subvarieties (of fixed dimension) by some equivalence relation (called rational equivalence). These groups carry many information on $X$ but are in general very difficult to study. On the other hand, one can associate to $X$ several cohomology groups which are "linear" objects and hence are rather simple to understand. One then construct maps called "cycle class maps" from Chow groups to several cohomological theories.
In this talk, we focus on the case of a variety $X$ over a finite field. In this case, Tate conjecture claims the surjectivity of the cycle class map with rational coefficients; this conjecture is still widely open. In case of integral coefficients, we speak about the integral version of the conjecture and we know several counterexamples for the surjectivity. In this talk, we present a survey of some well-known results on this subject and discuss other properties of algebraic cycles which are either proved or expected to be true. We also discuss several involved methods.[-]
Let $X$ be a projective variety over a field $k$. Chow groups are defined as the quotient of a free group generated by irreducible subvarieties (of fixed dimension) by some equivalence relation (called rational equivalence). These groups carry many information on $X$ but are in general very difficult to study. On the other hand, one can associate to $X$ several cohomology groups which are "linear" objects and hence are rather simple to ...[+]

14C25 ; 14G15 ; 14J70 ; 14C15 ; 14H05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Local densities compute isogeny classes - Achter, Jeffrey (Auteur de la Conférence) | CIRM H

Multi angle

Consider an ordinary isogeny class of elliptic curves over a finite, prime field. Inspired by a random matrix heuristic (which is so strong it's false), Gekeler defines a local factor for each rational prime. Using the analytic class number formula, he shows that the associated infinite product computes the size of the isogeny class.
I'll explain a transparent proof of this formula; it turns out that this product actually computes an adelic orbital integral which visibly counts the desired cardinality. Moreover, the new perspective allows a natural generalization to higher-dimensional abelian varieties. This is joint work with Julia Gordon and S. Ali Altug.[-]
Consider an ordinary isogeny class of elliptic curves over a finite, prime field. Inspired by a random matrix heuristic (which is so strong it's false), Gekeler defines a local factor for each rational prime. Using the analytic class number formula, he shows that the associated infinite product computes the size of the isogeny class.
I'll explain a transparent proof of this formula; it turns out that this product actually computes an adelic ...[+]

11G20 ; 22E35 ; 14G15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Good recursive towers - Bassa, Alp (Auteur de la Conférence) | CIRM H

Multi angle

Curves over finite fields of large genus with many rational points have been of interest for both theoretical reasons and for applications. In the past, various methods have been employed for the construction of such curves. One such method is by means of explicit recursive equations and will be the emphasis of this talk.The first explicit examples were found by Garcia–Stichtenoth over quadratic finite fields in 1995. Afterwards followed the discovery of good towers over cubic finite fields and finally all nonprime finite fields in 2013 (B.–Beelen–Garcia–Stichtenoth). The recursive nature of these towers makes them very special and in fact all good examples have been shown to have a modular interpretation of some sort. The questions of finding good recursive towers over prime fields resisted all attempts for several decades and lead to the common belief that such towers might not exist. In this talk I will try to give an overview of the landscape of explicit recursive towers and present a recently discovered tower over all finite fields including prime fields, except $F_{2}$ and $F_{3}$.
This is joint work with Christophe Ritzenthaler.[-]
Curves over finite fields of large genus with many rational points have been of interest for both theoretical reasons and for applications. In the past, various methods have been employed for the construction of such curves. One such method is by means of explicit recursive equations and will be the emphasis of this talk.The first explicit examples were found by Garcia–Stichtenoth over quadratic finite fields in 1995. Afterwards followed the ...[+]

11G20 ; 11T71 ; 14H25 ; 14G05 ; 14G15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We are interested in the behaviour of Frobenius roots when the base field is fixed and the genus of the curve or the dimension of the abelian variety tends to infinity. I shall explain how to put the question and what are the answers. This happens to be a question in algebraic number theory and harmonic analysis. For curves (and for number fields) these are my old results with Serge Vladuts, for abelian varieties those of J.-P. Serre (séminaire Bourbaki, 2018) and my work in progress with Nicolas Nadirashvili.[-]
We are interested in the behaviour of Frobenius roots when the base field is fixed and the genus of the curve or the dimension of the abelian variety tends to infinity. I shall explain how to put the question and what are the answers. This happens to be a question in algebraic number theory and harmonic analysis. For curves (and for number fields) these are my old results with Serge Vladuts, for abelian varieties those of J.-P. Serre (séminaire ...[+]

11S40 ; 11R04 ; 11R58 ; 14G15 ; 14K15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Projective Reed Muller codes revisited - Ghorpade, Sudhir (Auteur de la Conférence) | CIRM H

Multi angle

Projective Reed Muller Codes constitute an interesting class of linear codes, which was introduced by Gilles Lachaud in 1988. Questions about their minimum distance are intimately related to the question about the maximum possible number of F-rational points in the m-dimensional projective space on a hypersurface of degree d in m+1 variables with coefficients in a finite field F. Michael Tsfasman gave a conjectural formula for this maximum possible number of points on such hypersurfaces, and the conjecture was soon proved in the affirmative by Jean-Pierre Serre. In all these works, it is generally assumed that the degree d is at most q, where q is the number of elements in F. Anders Sørensen considered in 1991 more general projective Reed Muller codes where d can be larger than q. From a coding theoretical perspective, it is more natural to consider this larger class. Sørensen proposed a formula for the minimum distance in the general case, and also studied the duals of the projective Reed-Muller codes.
We shall revisit the work of Sorensen by pointing out some minor inaccuracies in his proof of the minimum distance. We then propose an alternative proof. Further, we address the question of obtaining a characterization of the minimum weight codewords of projective Reed Muller codes.
This is a joint work with Rati Ludhani. [-]
Projective Reed Muller Codes constitute an interesting class of linear codes, which was introduced by Gilles Lachaud in 1988. Questions about their minimum distance are intimately related to the question about the maximum possible number of F-rational points in the m-dimensional projective space on a hypersurface of degree d in m+1 variables with coefficients in a finite field F. Michael Tsfasman gave a conjectural formula for this maximum ...[+]

94B05 ; 14G15

Sélection Signaler une erreur