En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 4 résultats

Filtrer
Sélectionner : Tous / Aucun
P Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Holomorphic symplectic geometry of elliptic surfaces - Hwang, Jun-Muk (Auteur de la conférence) | CIRM H

Multi angle

When a complex surface $X$ admits a nowhere vanishing holomorphic 2-form, it determines a (holomorphic) symplectic structure on $X$. We consider the case when $X$ is an elliptic surface and study how the symplectic geometry is related to the underlying complex geometry of the elliptic fibration. This is based on a joint work with Guolei Zhong.

14J27 ; 53D05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will overview notions of conformal measures and currents, and a Patterson-Sullivan method of constructing them, in various branches of Holomorphic Dynamics: for 1D rational maps and their natural extensions, complex Henon maps and classical Kleinian group, with an eye towards an extension to higher rank actions.

37F10 ; 37F35 ; 57S25 ; 14L30 ; 22E40 ; 32U40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We study automorphism groups of complex K3 surfaces in the view of hyperbolicity. In particular, we show the finiteness of the Néron-Severi lattices of complex projective K3 surfaces whose automorphism groups are non-elementary hyperbolic under the (optimal) assumption that the Picard number is greater than or equal to 6. This is a joint work in progress with Professor Koji Fujiwara (Kyoto University) and Professor Xun Yu (Tianjing University).

14J50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Perturbations of parabolic endomorphisms in dimension 2 - Raissy, Jasmin (Auteur de la conférence) | CIRM H

Multi angle

In this talk, I will present a work in progress with Matthieu Astorg and Lorena Lopez-Hernanz. We are interested in studying holomorphic endomorphisms of $C2$ which are tangent to the identity at the origin, and our goal is to understand how the dynamics changes when we perturb such maps. In particular, we generalize a result obtained by Bianchi and show a statement à la Lavaurs when the unperturbed map admits a basin parabolic centered in a characteristic direction, but it does not fix a complex line. I will recall the motivation and results in the one-dimensional case before moving to dimension 2.[-]
In this talk, I will present a work in progress with Matthieu Astorg and Lorena Lopez-Hernanz. We are interested in studying holomorphic endomorphisms of $C2$ which are tangent to the identity at the origin, and our goal is to understand how the dynamics changes when we perturb such maps. In particular, we generalize a result obtained by Bianchi and show a statement à la Lavaurs when the unperturbed map admits a basin parabolic centered in a ...[+]

32H50 ; 37F80

Sélection Signaler une erreur