En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 34C28 2 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Hyperbolic (Anosov or Axiom A) flows have discrete Ruelle spectrum. For contact Anosov flows, e.g. geodesic flows, where a smooth contact one form is preserved, the trapped set is a smooth symplectic manifold, normally hyperbolic, and M. Tsujii, S. Nonnenmacher and M. Zworski, have given an estimate for the asymptotic spectral gap, i.e. that appears in the limit of high frequencies in the flow direction. We will propose a different approach that may improve this estimate. This will be presented on a simple toy model, partially expanding maps. Work with Tobias Weich.[-]
Hyperbolic (Anosov or Axiom A) flows have discrete Ruelle spectrum. For contact Anosov flows, e.g. geodesic flows, where a smooth contact one form is preserved, the trapped set is a smooth symplectic manifold, normally hyperbolic, and M. Tsujii, S. Nonnenmacher and M. Zworski, have given an estimate for the asymptotic spectral gap, i.e. that appears in the limit of high frequencies in the flow direction. We will propose a different approach that ...[+]

37C30 ; 37D20 ; 58J50 ; 34C28

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will survey recent results on the generic properties of probability measures invariant by the geodesic flow defined on a nonpositively curved manifold. Such a flow is one of the early example of a non-uniformly hyperbolic system. I will talk about ergodicity and mixing both in the compact and noncompact setting, and ask some questions about the associated frame flow, which is partially hyperbolic.

37B10 ; 37D40 ; 34C28 ; 37C20 ; 37C40 ; 37D35

Bookmarks Report an error