En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 32P05 3 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In my work in progress on complex analytic vanishing cycles for formal schemes, I have defined integral "etale" cohomology groups of a compact strictly analytic space over the field of Laurent power series with complex coefficients. These are finitely generated abelian groups provided with a quasi-unipotent action of the fundamental group of the punctured complex plane, and they give rise to all $l$-adic etale cohomology groups of the space. After a short survey of this work, I will explain a theorem which, in the case when the space is rig-smooth, compares those groups and the de Rham cohomology groups of the space. The latter are provided with the Gauss-Manin connection and an additional structure which allow one to recover from them the "etale" cohomology groups with complex coefficients.[-]
In my work in progress on complex analytic vanishing cycles for formal schemes, I have defined integral "etale" cohomology groups of a compact strictly analytic space over the field of Laurent power series with complex coefficients. These are finitely generated abelian groups provided with a quasi-unipotent action of the fundamental group of the punctured complex plane, and they give rise to all $l$-adic etale cohomology groups of the space. ...[+]

32P05 ; 14F20 ; 14F40 ; 14G22 ; 32S30

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider a meromorphic family of endomorphisms of the complex projective space parameterized by the unit disk, and show that the blow-up of the Lyapunov exponent near the origin is controlled by a non-Archimedean quantity.

37P50 ; 11S82 ; 14G22 ; 32P05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
I will discuss some recent developments in the direction of the Yau-Tian-Donaldson conjecture, which relates the existence of constant scalar curvature Kähler metrics to the algebro-geometric notion of $K$-stability. The emphasis will be put on the use of pluripotential theory and the interpretation of $K$-stability in terms of non-Archimedean geometry.

32Q20 ; 32Q26 ; 32Q25 ; 32P05 ; 53C55

Bookmarks Report an error