En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 53C35 4 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Minicourse shape spaces and geometric statistics - Pennec, Xavier (Author of the conference) ; Trouvé, Alain (Author of the conference) | CIRM H

Multi angle

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This is joint work with Jasmin Matz. The goal is to introduce a regularized version of the analytic torsion for locally symmetric spaces of finite volume and higher rank. Currently we are able to treat quotients of the symmetric space $SL(n,\mathbb{R})/SO(n)$ by congruence subgroups of $SL(n,\mathbb{Z})$. The definition of the analytic torsion is based on the study of the renormalized trace of the corresponding heat operators. The main tool is the Arthur trace formula. I will also discuss problems related to potential applications to the cohomology of arithmetic groups.[-]
This is joint work with Jasmin Matz. The goal is to introduce a regularized version of the analytic torsion for locally symmetric spaces of finite volume and higher rank. Currently we are able to treat quotients of the symmetric space $SL(n,\mathbb{R})/SO(n)$ by congruence subgroups of $SL(n,\mathbb{Z})$. The definition of the analytic torsion is based on the study of the renormalized trace of the corresponding heat operators. The main tool is ...[+]

53C35 ; 58J52

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
For any symmetric space $X$ of noncompact type, its quotients by torsion-free discrete isometry groups $\Gamma$ are locally symmetric spaces. One problem is to understand the geometry and analysis, especially the spectral theory, and interaction between them of such spaces. Two classes of infinite groups $\Gamma$ have been extensively studied:
$(1) \Gamma$ is a lattice, and hence $\Gamma$ $\backslash$ $X$ has finite volume.
$(2) X$ is of rank $1$, for example, when $X$ is the real hyperbolic space, $\Gamma$ is geometrically finite and $\Gamma$ $\backslash$ $X$ has infinite volume.
When $\Gamma$ is a nonuniform lattice in case $(1)$ or any group in case $(2)$, compactification of $\Gamma$ $\backslash$ $X$ and its boundary play an important role in the geometric scattering theory of $\Gamma$ $\backslash$ $X$. When $X$ is of rank at least $2$, quotients of $X$ of finite volume have also been extensively studied. There has been a lot of recent interest and work to understand quotients $\Gamma$ $\backslash$ $X$ of infinite volume. For example, there are some generalizations of convex cocompact groups, but no generalizations yet of geometrically finite groups. They are related to the notion of thin groups. One naturally expects that these locally symmetric spaces should have real analytic compactifications with corners (with codimension equal to the rank), and their boundary should also be used to parametrize the continuous spectrum and to understand the geometrically scattering theory. These compactifications also provide a natural class of manifolds with corners. In this talk, I will describe some questions, open problems and results.[-]
For any symmetric space $X$ of noncompact type, its quotients by torsion-free discrete isometry groups $\Gamma$ are locally symmetric spaces. One problem is to understand the geometry and analysis, especially the spectral theory, and interaction between them of such spaces. Two classes of infinite groups $\Gamma$ have been extensively studied:
$(1) \Gamma$ is a lattice, and hence $\Gamma$ $\backslash$ $X$ has finite volume.
$(2) X$ is of rank ...[+]

53C35 ; 58J50

Bookmarks Report an error