En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 82C31 8 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Inspired by modeling in neurosciences, we here discuss the well-posedness of a networked integrate-and-fire model describing an infinite population of companies which interact with one another through their common statistical distribution. The interaction is of the self-excitatory type as, at any time, the debt of a company increases when some of the others default: precisely, the loss it receives is proportional to the instantaneous proportion of companies that default at the same time. From a mathematical point of view, the coefficient of proportionality, denoted by a, is of great importance as the resulting system is known to blow-up when a takes large values, a blow-up meaning that a macroscopic proportion of companies may default at the same time. In the current talk, we focus on the complementary regime and prove that existence and uniqueness hold in arbitrary time without any blow-up when the excitatory parameter is small enough.[-]
Inspired by modeling in neurosciences, we here discuss the well-posedness of a networked integrate-and-fire model describing an infinite population of companies which interact with one another through their common statistical distribution. The interaction is of the self-excitatory type as, at any time, the debt of a company increases when some of the others default: precisely, the loss it receives is proportional to the instantaneous proportion ...[+]

35K60 ; 82C31 ; 92B20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

An introduction to molecular dynamics - Stoltz, Gabriel (Author of the conference) | CIRM H

Post-edited

The aim of this two-hour lecture is to present the mathematical underpinnings of some common numerical approaches to compute average properties as predicted by statistical physics. The first part provides an overview of the most important concepts of statistical physics (in particular thermodynamic ensembles). The aim of the second part is to provide an introduction to the practical computation of averages with respect to the Boltzmann-Gibbs measure using appropriate stochastic dynamics of Langevin type. Rigorous ergodicity results as well as elements on the estimation of numerical errors are provided. The last part is devoted to the computation of transport coefficients such as the mobility or autodiffusion in fluids, relying either on integrated equilibrium correlations à la Green-Kubo, or on the linear response of nonequilibrium dynamics in their steady-states.[-]
The aim of this two-hour lecture is to present the mathematical underpinnings of some common numerical approaches to compute average properties as predicted by statistical physics. The first part provides an overview of the most important concepts of statistical physics (in particular thermodynamic ensembles). The aim of the second part is to provide an introduction to the practical computation of averages with respect to the Boltzmann-Gibbs ...[+]

82B31 ; 82B80 ; 65C30 ; 82C31 ; 82C70 ; 60H10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The KPZ fixed point - Lecture 1 - Remenik, Daniel (Author of the conference) | CIRM H

Multi angle

In these lectures I will present the recent construction of the KPZ fixed point, which is the scaling invariant Markov process conjectured to arise as the universal scaling limit of all models in the KPZ universality class, and which contains all the fluctuation behavior seen in the class.
In the first part of the minicourse I will describe this process and how it arises from a particular microscopic model, the totally asymmetric exclusion process (TASEP). Then I will present a Fredholm determinant formula for its distribution (at a fixed time) and show how all the main properties of the fixed point (including the Markov property, space and time regularity, symmetries and scaling invariance, and variational formulas) can be derived from the formula and the construction, and also how the formula reproduces known self-similar solutions such as the $Airy_1andAiry_2$ processes.
The second part of the course will be devoted to explaining how the KPZ fixed point can be computed starting from TASEP. The method is based on solving, for any initial condition, the biorthogonal ensemble representation for TASEP found by Sasamoto '05 and Borodin-Ferrari-Prähofer-Sasamoto '07. The resulting kernel involves transition probabilities of a random walk forced to hit a curve defined by the initial data, and in the KPZ 1:2:3 scaling limit the formula leads in a transparent way to a Fredholm determinant formula given in terms of analogous kernels based on Brownian motion.
Based on joint work with K. Matetski and J. Quastel.[-]
In these lectures I will present the recent construction of the KPZ fixed point, which is the scaling invariant Markov process conjectured to arise as the universal scaling limit of all models in the KPZ universality class, and which contains all the fluctuation behavior seen in the class.
In the first part of the minicourse I will describe this process and how it arises from a particular microscopic model, the totally asymmetric exclusion ...[+]

82C31 ; 82C23 ; 82D60 ; 82C22 ; 82C43

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Space-time covariance of KPZ growth models - Ferrari, Patrik (Author of the conference) | CIRM H

Multi angle

For some growth models in the Kardar-Parisi-Zhang universality class, the large time limit process of the interface profile is well established. Correlations in space-time are much less understood. Along special space-time lines, called characteristics, there is a sort of ageing. We study the covariance of the interface process along characteristic lines for generic initial conditions. Joint work with A. Occelli (arXiv:1807.02982).

82C31 ; 60F10 ; 82C28

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
In this talk we discuss the convergence to equilibrium in conservative-dissipative ODE-systems, kinetic relaxation models (of BGK-type), and Fokker-Planck equation. This will include symmetric, non-symmetric and hypocoercive evolution equations. A main focus will be on deriving sharp decay rates.
We shall start with hypocoercivity in ODE systems, with the ”hypocoercivity index” characterizing its structural complexity.
BGK equations are kinetic transport equations with a relaxation operator that drives the phase space distribution towards the spatially local equilibrium, a Gaussian with the same macroscopic parameters. Due to the absence of dissipation w.r.t. the spatial direction, convergence to the global equilibrium is only possible thanks to the transport term that mixes various positions. Hence, such models are hypocoercive.
We shall prove exponential convergence towards the equilibrium with explicit rates for several linear, space periodic BGK-models in dimension 1 and 2. Their BGK-operators differ by the number of conserved macroscopic quantities (like mass, momentum, energy), and hence their hypocoercivity index. Our discussion includes also discrete velocity models, and the local exponential stability of a nonlinear BGK-model.
The third part of the talk is concerned with the entropy method for (non)symmetric Fokker-Planck equations, which is a powerful tool to analyze the rate of convergence to the equilibrium (in relative entropy and hence in L1). The essence of the method is to first derive a differential inequality between the first and second time derivative of the relative entropy, and then between the entropy dissipation and the entropy. For hypocoercive Fokker-Planck equations, i.e. degenerate parabolic equations (with drift terms that are linear in the spatial variable) we modify the classical entropy method by introducing an auxiliary functional (of entropy dissipation type) to prove exponential decay of the solution towards the steady state in relative entropy. The obtained rate is indeed sharp (both for the logarithmic and quadratic entropy). Finally, we extend the method to the kinetic Fokker-Planck equation (with nonquadratic potential).[-]
In this talk we discuss the convergence to equilibrium in conservative-dissipative ODE-systems, kinetic relaxation models (of BGK-type), and Fokker-Planck equation. This will include symmetric, non-symmetric and hypocoercive evolution equations. A main focus will be on deriving sharp decay rates.
We shall start with hypocoercivity in ODE systems, with the ”hypocoercivity index” characterizing its structural complexity.
BGK equations are kinetic ...[+]

35Q84 ; 35H10 ; 35B20 ; 35K10 ; 35B40 ; 47D07 ; 35Pxx ; 47D06 ; 82C31

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Semiclassical methods have shown to be very efficient to get quantitative description of metastability of Langevin dynamics. In this talk we try to explain the main ideas of this approach in both reversible and non-reversible cases.

35P15 ; 35P20 ; 82C31 ; 35Q84 ; 47A75 ; 81Q60

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

How to compute transition times? - Lelièvre, Tony (Author of the conference) | CIRM H

Multi angle

We illustrate how the Hill relation and the notion of quasi-stationary distribution can be used to analyse the error introduced by many algorithms that have been proposed in the literature, in particular in molecular dynamics, to compute mean reaction times between metastable states for Markov processes. We present in particular how this analysis gives rigorous foundations to methods using splitting algorithms to sample the reactive trajectories.

60J22 ; 65C40 ; 82C31

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The KPZ fixed point - Lecture 2 - Remenik, Daniel (Author of the conference) | CIRM H

Multi angle

In these lectures I will present the recent construction of the KPZ fixed point, which is the scaling invariant Markov process conjectured to arise as the universal scaling limit of all models in the KPZ universality class, and which contains all the fluctuation behavior seen in the class.
In the first part of the minicourse I will describe this process and how it arises from a particular microscopic model, the totally asymmetric exclusion process (TASEP). Then I will present a Fredholm determinant formula for its distribution (at a fixed time) and show how all the main properties of the fixed point (including the Markov property, space and time regularity, symmetries and scaling invariance, and variational formulas) can be derived from the formula and the construction, and also how the formula reproduces known self-similar solutions such as the $Airy_1andAiry_2$ processes.
The second part of the course will be devoted to explaining how the KPZ fixed point can be computed starting from TASEP. The method is based on solving, for any initial condition, the biorthogonal ensemble representation for TASEP found by Sasamoto '05 and Borodin-Ferrari-Prähofer-Sasamoto '07. The resulting kernel involves transition probabilities of a random walk forced to hit a curve defined by the initial data, and in the KPZ 1:2:3 scaling limit the formula leads in a transparent way to a Fredholm determinant formula given in terms of analogous kernels based on Brownian motion.
Based on joint work with K. Matetski and J. Quastel.[-]
In these lectures I will present the recent construction of the KPZ fixed point, which is the scaling invariant Markov process conjectured to arise as the universal scaling limit of all models in the KPZ universality class, and which contains all the fluctuation behavior seen in the class.
In the first part of the minicourse I will describe this process and how it arises from a particular microscopic model, the totally asymmetric exclusion ...[+]

82C31 ; 82C23 ; 82D60 ; 82C22 ; 82C43

Bookmarks Report an error