En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Bordenave, Charles 17 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This talk will focus on the fluctuations of a linear spectral statistic around its mean for $P\left(W_N, D_N\right)$ where $P$ is a polynomial, $W_N$ a Wigner matrix and $D_N$ a deterministic diagonal matrix. I will first consider the case when $P\left(W_N,D_N\right)=W_N+D_N$, based on a joint work with M. Février (U. Paris-Saclay). In the general case of $P$ a selfadjoint noncommutative polynomial, I will present results for the special case of the Stieltjes transform, based on a joint work with S. Belinschi (CNRS, U. Toulouse), M. Capitaine (CNRS,U. Toulouse) and M. Février (U. Paris-Saclay).[-]
This talk will focus on the fluctuations of a linear spectral statistic around its mean for $P\left(W_N, D_N\right)$ where $P$ is a polynomial, $W_N$ a Wigner matrix and $D_N$ a deterministic diagonal matrix. I will first consider the case when $P\left(W_N,D_N\right)=W_N+D_N$, based on a joint work with M. Février (U. Paris-Saclay). In the general case of $P$ a selfadjoint noncommutative polynomial, I will present results for the special case of ...[+]

60B20 ; 15B52 ; 60F05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider independent Hermitian heavy-tailed random matrices. Our model includes the Lévy matrices as well as sparse random matrices with O(1) non-zero entries per row. By representing these matrices as weighted graphs, we derive a large deviation principle for key macroscopic observables. Specifically, we focus on the empirical distribution of eigenvalues, the joint neighborhood distribution, and the joint traffic distribution. As an application, we define a notion of microstates entropy for traffic distribution which is additive under free traffic convolution.[-]
We consider independent Hermitian heavy-tailed random matrices. Our model includes the Lévy matrices as well as sparse random matrices with O(1) non-zero entries per row. By representing these matrices as weighted graphs, we derive a large deviation principle for key macroscopic observables. Specifically, we focus on the empirical distribution of eigenvalues, the joint neighborhood distribution, and the joint traffic distribution. As an ...[+]

60B20 ; 60F10 ; 46L54

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Wilson loops are the basic observables of Yang—Mills theory, and their expectation is rigorously defined on the Euclidean plane and on a compact Riemannian surface. Focusing on the case where the structure group is the unitary group, I will present a formula that computes any Wilson loop expectation in almost purely combinatorial terms, thanks to the dictionary between unitary and symmetric quantities provided by the Schur-Weyl duality.

81T13 ; 05E10 ; 60G65

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will present a recent amazing new approach to norm convergence of random matrices due to Chen, Garza Vargas, Tropp, and van Handel, and the way Michael Magee and I apply and expand it, together with fine topological expansion, to obtain norm convergence for random matrix models coming from representations of SU(n) of quasi-exponential dimension.

15A52 ; 46L54 ; 46L05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Over the last couple of years, it has become evident that matrix-valued semicircular elements establish strong links between free probability theory and noncommutative algebra. Another surprising connection of this kind was found in a recently finished project with Roland Speicher. We have shown that the Fuglede-Kadison determinant of an arbitrary matrix-valued semicircular element is essentially given by the capacity of its associated covariance map. In addition, we have improved a lower bound by Garg, Gurvits, Oliveira, and Widgerson on this capacity, by making it dimension-independent. Besides analytic tools from operator-valued free probability, these are the crucial ingredients in some novel algorithmic solution to the noncommutative Edmonds' problem which we described in collaboration with Johannes Hoffmann. In my talk, I will present our work and provide the background on free probability and noncommutative algebra required for this purpose.[-]
Over the last couple of years, it has become evident that matrix-valued semicircular elements establish strong links between free probability theory and noncommutative algebra. Another surprising connection of this kind was found in a recently finished project with Roland Speicher. We have shown that the Fuglede-Kadison determinant of an arbitrary matrix-valued semicircular element is essentially given by the capacity of its associated ...[+]

46L54 ; 65J15 ; 12E15 ; 15A22

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

On determinants of random matrices - Zeitouni, Ofer (Author of the conference) | CIRM H

Post-edited

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random perturbation of low-rank matrices - Wang, Ke (Author of the conference) | CIRM H

Multi angle

Bookmarks Report an error