Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
Recently, Armstrong, Reiner and Rhoades associated with any (well generated) complex reflection group two parking spaces, and conjectured their isomorphism. This has to be seen as a generalisation of the bijection between non-crossing and non-nesting partitions, both counted by the Catalan numbers. In this talk, I will review the conjecture and discuss a new approach towards its proof, based on the geometry of the discriminant of a complex reflection group. This is an ongoing joint project with Iain Gordon.
[-]
Recently, Armstrong, Reiner and Rhoades associated with any (well generated) complex reflection group two parking spaces, and conjectured their isomorphism. This has to be seen as a generalisation of the bijection between non-crossing and non-nesting partitions, both counted by the Catalan numbers. In this talk, I will review the conjecture and discuss a new approach towards its proof, based on the geometry of the discriminant of a complex ...
[+]
06B15 ; 05A19 ; 55R80
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Given a finite-dimensional representation M of a Dynkin quiver Q (which is the orientation of a simply-laced Dynkin diagram) we attach to it the variety of its subrepresentations. This variety is strati ed according to the possible dimension vectors of the subresentations of M. Every piece is called a quiver Grassmannian. Those varieties were introduced by Schofield and Crawley Boevey for the study of general representations of quivers. As pointed out by Ringel, they also appeared previously in works of Auslander.
They reappered in the literature in 2006, when Caldero and Chapoton proved that they can be used to categorify the cluster algebras associated with Q. A special case is when M is generic. In this case all the quiver Grassmannians are smooth and irreducible of "minimal dimension". On the other hand, in collaboration with Markus Reineke and Evgeny Feigin, we showed that interesting varieties appear as quiver Grassmannians associated with non-rigid modules. In this talk I will survey on recent progresses on the subject. In particular I will provide another proof of the key result of Caldero and Chapoton.
[-]
Given a finite-dimensional representation M of a Dynkin quiver Q (which is the orientation of a simply-laced Dynkin diagram) we attach to it the variety of its subrepresentations. This variety is strati ed according to the possible dimension vectors of the subresentations of M. Every piece is called a quiver Grassmannian. Those varieties were introduced by Schofield and Crawley Boevey for the study of general ...
[+]
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We present a new approach to affine Deligne Lusztig varieties which allows us to study the so called "non-basic" case in a type free manner. The central idea is to translate the question of non-emptiness and the computation of the dimensions of these varieties into geometric questions in the Bruhat-Tits building. All boils down to understand existence of certain positively folded galleries in affine Coxeter complexes. To do so, we explicitly construct such galleries and use, among other techniques, the root operators introduced by Gaussent and Littelmann to manipulate them.
[-]
We present a new approach to affine Deligne Lusztig varieties which allows us to study the so called "non-basic" case in a type free manner. The central idea is to translate the question of non-emptiness and the computation of the dimensions of these varieties into geometric questions in the Bruhat-Tits building. All boils down to understand existence of certain positively folded galleries in affine Coxeter complexes. To do so, we explicitly ...
[+]
14L30 ; 14M15 ; 20G05
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In the framework of the study of K-theoretical Coulomb branches, Finkelberg-Tsymbaliuk introduced remarkable new algebras, the shifted quantum affine algebras an their truncations, in the spirit of the shifted Yangians of Brundan-Kleshev, Braverman-Finkelberg Nakajima, Kamnitzer-Webster-Weekes-Yacobi... We discuss the following points in representation theory of (truncated) shifted quantum affine algebras that we relate to representations of Borel quantum affine algebras by induction and restriction functors. We establish that the Grothendieck ring of the category of finite-dimensional representations has a natural cluster algebra structure. We propose a conjectural parametrization of simple modules of a non simply-laced truncation in terms of the Langlands dual quantum affine Lie algebra. We have several evidences, including a general result for simple finite-dimensional representations proved by using the Baxter polynomiality of quantum integrable models.
[-]
In the framework of the study of K-theoretical Coulomb branches, Finkelberg-Tsymbaliuk introduced remarkable new algebras, the shifted quantum affine algebras an their truncations, in the spirit of the shifted Yangians of Brundan-Kleshev, Braverman-Finkelberg Nakajima, Kamnitzer-Webster-Weekes-Yacobi... We discuss the following points in representation theory of (truncated) shifted quantum affine algebras that we relate to representations of ...
[+]
17B37 ; 17B10 ; 82B23 ; 13F60