En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 20B30 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We begin by introducing to the diagrammatic Cherednik algebras of Webster. We then summarise some recent results (in joint work with Anton Cox and Liron Speyer) concerning the representation theory of these algebras. In particular we generalise Kleshchev-type decomposition numbers, James-Donkin row and column removal phenomena, and the Kazhdan-Lusztig approach to calculating decomposition numbers.

20G43 ; 20F55 ; 20B30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The diameter of the symmetric group: ideas and tools - Helfgott, Harald (Auteur de la Conférence) | CIRM H

Multi angle

Given a finite group $G$ and a set $A$ of generators, the diameter diam$(\Gamma(G, A))$ of the Cayley graph $\Gamma(G, A)$ is the smallest $\ell$ such that every element of $G$ can be expressed as a word of length at most $\ell$ in $A \cup A^{-1}$. We are concerned with bounding diam$(G) := max_A$ diam$(\Gamma(G, A))$.
It has long been conjectured that the diameter of the symmetric group of degree $n$ is polynomially bounded in $n$. In 2011, Helfgott and Seress gave a quasipolynomial bound, namely, $O\left (e^{(log n)^{4+\epsilon}}\right )$. We will discuss a recent, much simplified version of the proof.[-]
Given a finite group $G$ and a set $A$ of generators, the diameter diam$(\Gamma(G, A))$ of the Cayley graph $\Gamma(G, A)$ is the smallest $\ell$ such that every element of $G$ can be expressed as a word of length at most $\ell$ in $A \cup A^{-1}$. We are concerned with bounding diam$(G) := max_A$ diam$(\Gamma(G, A))$.
It has long been conjectured that the diameter of the symmetric group of degree $n$ is polynomially bounded in $n$. In 2011, ...[+]

20B05 ; 05C25 ; 20B30 ; 20F69 ; 20D60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Non-free actions on the Poisson boundary - Erschler, Anna (Auteur de la Conférence) | CIRM H

Multi angle

Sélection Signaler une erreur