Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Let $G$ be a connected semisimple Lie group with Lie algebra $\mathfrak{g}$. There are two natural duality constructions that assign to it the Langlands dual group $G^\lor$ (associated to the dual root system) and the Poisson-Lie dual group $G^∗$. Cartan subalgebras of $\mathfrak{g}^\lor$ and $\mathfrak{g}^∗$ are isomorphic to each other, but $G^\lor$ is semisimple while $G^∗$ is solvable.
In this talk, we explain the following non-trivial relation between these two dualities: the integral cone defined by the Berenstein-Kazhdan potential on the Borel subgroup $B^\lor \subset G^\lor$ is isomorphic to the integral Bohr-Sommerfeld cone defined by the Poisson structure on $K^∗ \subset G^∗$ (the Poisson-Lie dual of the compact form $K \subset G$). The first cone parametrizes canonical bases of irreducible $G$-modules. The corresponding points in the second cone belong to integral symplectic leaves of $K^∗$.
The talk is based on a joint work with A. Berenstein, B. Hoffman and Y. Li.
[-]
Let $G$ be a connected semisimple Lie group with Lie algebra $\mathfrak{g}$. There are two natural duality constructions that assign to it the Langlands dual group $G^\lor$ (associated to the dual root system) and the Poisson-Lie dual group $G^∗$. Cartan subalgebras of $\mathfrak{g}^\lor$ and $\mathfrak{g}^∗$ are isomorphic to each other, but $G^\lor$ is semisimple while $G^∗$ is solvable.
In this talk, we explain the following non-trivial ...
[+]
53D17 ; 17B10
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The notion of a Poisson manifold originated in mathematical physics, where it is used to describe the equations of motion of classical mechanical systems, but it is nowadays connected with many different parts of mathematics. A key feature of any Poisson manifold is that it carries a canonical foliation by even-dimensional submanifolds, called its symplectic leaves. They correspond physically to regions in phase space where the motion of a particle is trapped.
I will give an introduction to Poisson manifolds in the context of complex analytic/algebraic geometry, with a particular focus on the geometry of the associated foliation. Starting from basic definitions and constructions, we will see many examples, leading to some discussion of recent progress towards the classification of Poisson brackets on Fano manifolds of small dimension, such as projective space.
[-]
The notion of a Poisson manifold originated in mathematical physics, where it is used to describe the equations of motion of classical mechanical systems, but it is nowadays connected with many different parts of mathematics. A key feature of any Poisson manifold is that it carries a canonical foliation by even-dimensional submanifolds, called its symplectic leaves. They correspond physically to regions in phase space where the motion of a ...
[+]
53D17 ; 37F75 ; 14J10
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The notion of a Poisson manifold originated in mathematical physics, where it is used to describe the equations of motion of classical mechanical systems, but it is nowadays connected with many different parts of mathematics. A key feature of any Poisson manifold is that it carries a canonical foliation by even-dimensional submanifolds, called its symplectic leaves. They correspond physically to regions in phase space where the motion of a particle is trapped.
I will give an introduction to Poisson manifolds in the context of complex analytic/algebraic geometry, with a particular focus on the geometry of the associated foliation. Starting from basic definitions and constructions, we will see many examples, leading to some discussion of recent progress towards the classification of Poisson brackets on Fano manifolds of small dimension, such as projective space.
[-]
The notion of a Poisson manifold originated in mathematical physics, where it is used to describe the equations of motion of classical mechanical systems, but it is nowadays connected with many different parts of mathematics. A key feature of any Poisson manifold is that it carries a canonical foliation by even-dimensional submanifolds, called its symplectic leaves. They correspond physically to regions in phase space where the motion of a ...
[+]
37F75 ; 53D17 ; 14J10
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The notion of a Poisson manifold originated in mathematical physics, where it is used to describe the equations of motion of classical mechanical systems, but it is nowadays connected with many different parts of mathematics. A key feature of any Poisson manifold is that it carries a canonical foliation by even-dimensional submanifolds, called its symplectic leaves. They correspond physically to regions in phase space where the motion of a particle is trapped.
I will give an introduction to Poisson manifolds in the context of complex analytic/algebraic geometry, with a particular focus on the geometry of the associated foliation. Starting from basic definitions and constructions, we will see many examples, leading to some discussion of recent progress towards the classification of Poisson brackets on Fano manifolds of small dimension, such as projective space.
[-]
The notion of a Poisson manifold originated in mathematical physics, where it is used to describe the equations of motion of classical mechanical systems, but it is nowadays connected with many different parts of mathematics. A key feature of any Poisson manifold is that it carries a canonical foliation by even-dimensional submanifolds, called its symplectic leaves. They correspond physically to regions in phase space where the motion of a ...
[+]
37F75 ; 53D17 ; 14J10
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The notion of a Poisson manifold originated in mathematical physics, where it is used to describe the equations of motion of classical mechanical systems, but it is nowadays connected with many different parts of mathematics. A key feature of any Poisson manifold is that it carries a canonical foliation by even-dimensional submanifolds, called its symplectic leaves. They correspond physically to regions in phase space where the motion of a particle is trapped.
I will give an introduction to Poisson manifolds in the context of complex analytic/algebraic geometry, with a particular focus on the geometry of the associated foliation. Starting from basic definitions and constructions, we will see many examples, leading to some discussion of recent progress towards the classification of Poisson brackets on Fano manifolds of small dimension, such as projective space.
[-]
The notion of a Poisson manifold originated in mathematical physics, where it is used to describe the equations of motion of classical mechanical systems, but it is nowadays connected with many different parts of mathematics. A key feature of any Poisson manifold is that it carries a canonical foliation by even-dimensional submanifolds, called its symplectic leaves. They correspond physically to regions in phase space where the motion of a ...
[+]
14J10 ; 37F75 ; 53D17
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
It is thought that the classifications and constructions of holomorphic Poisson structures are worth studying. The classification when the Picard rank is 2 or higher is unknown. In this talk, we will introduce the classification of holomorphic Poisson structures with the reduced degeneracy divisor that have only simple normal crossing singularities, on the product of Fano variety of Picard rank 1. This claims that such a Poisson manifold must be a diagonal Poisson structure on the product of projective spaces, so this is a generalization of Lima and Pereira's study. The talk will also include various examples, classifications, and problems of high-dimensional holomorphic Poisson structures.
[-]
It is thought that the classifications and constructions of holomorphic Poisson structures are worth studying. The classification when the Picard rank is 2 or higher is unknown. In this talk, we will introduce the classification of holomorphic Poisson structures with the reduced degeneracy divisor that have only simple normal crossing singularities, on the product of Fano variety of Picard rank 1. This claims that such a Poisson manifold must be ...
[+]
53D17 ; 14J45 ; 14C17
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will discuss the existence of hyperkähler structures on local symplectic groupoids integrating holomorphic Poisson manifolds, and show that they always exist when the base is a Poisson surface. The hyperkähler structure is obtained by constructing the twistor space by lifting specific deformations of the Poisson surface adapted from Hitchin's unobstructedness result. In the special case of the zero Poisson structure, we recover the Feix-Kaledin hyperkähler structure on the cotangent bundle of a Kähler manifold.
[-]
I will discuss the existence of hyperkähler structures on local symplectic groupoids integrating holomorphic Poisson manifolds, and show that they always exist when the base is a Poisson surface. The hyperkähler structure is obtained by constructing the twistor space by lifting specific deformations of the Poisson surface adapted from Hitchin's unobstructedness result. In the special case of the zero Poisson structure, we recover the Fe...
[+]
53D17 ; 53C26 ; 53C28 ; 32G05