m

F Nous contacter


0

Documents  81S10 | enregistrements trouvés : 4

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

We discuss interactions between quantum mechanics and symplectic topology including a link between symplectic displacement energy, a fundamental notion of symplectic dynamics, and the quantum speed limit, a universal constraint on the speed of quantum-mechanical processes.
Joint work with Laurent Charles.

81S10 ; 53D50 ; 81Q20 ; 81R30

Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.

In my talk I am presenting a link between time-frequency analysis and noncommutative geometry. In particular, a connection between the Moyal plane, noncommutative tori and time-frequency analysis. After a brief description of a dictionary between these two areas I am going to explain some consequences for time-frequency analysis and noncommutative geometry such as the construction of projections in the mentioned operator algebras and Gabor frames.

Keywords: modulation spaces - Banach-Gelfand triples - noncommutative tori - Moyal plane - noncommutative geometry - deformation quantization
In my talk I am presenting a link between time-frequency analysis and noncommutative geometry. In particular, a connection between the Moyal plane, noncommutative tori and time-frequency analysis. After a brief description of a dictionary between these two areas I am going to explain some consequences for time-frequency analysis and noncommutative geometry such as the construction of projections in the mentioned operator algebras and Gabor ...

46Fxx ; 46Kxx ; 46S60 ; 81S05 ; 81S10 ; 81S30

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

In the 80’s, D. Ruelle, D. Bowen and others have introduced probabilistic and spectral methods in order to study deterministic chaos (”Ruelle resonances”). For a geodesic flow on a strictly negative curvature Riemannian manifold, following this approach and use of microlocal analysis, one obtains that long time fluctuations of classical probabilities are described by an effective quantum wave equation. This may be surprising because there is no added quantization procedure. We will discuss consequences for the zeros of dynamical zeta functions. This shows that the problematic of classical chaos and quantum chaos are closely related. Joint work with Masato Tsujii.
In the 80’s, D. Ruelle, D. Bowen and others have introduced probabilistic and spectral methods in order to study deterministic chaos (”Ruelle resonances”). For a geodesic flow on a strictly negative curvature Riemannian manifold, following this approach and use of microlocal analysis, one obtains that long time fluctuations of classical probabilities are described by an effective quantum wave equation. This may be surprising because there is no ...

37D20 ; 37D35 ; 81Q50 ; 81S10

Z