En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Laurent, Michel 15 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will explain some results about the arithmetic structure of algebraic points over a variety defined over a function fields in one variable. In particular we will introduce the weak and strong Vojta conjectures and explain some consequences of them. We will expose some recent developments on the subject : Curves, Varieties with ample cotangent bundle, curves in positive characteirstic, hypersurfaces.... If there is time we will explain some analogues over number fields.[-]
We will explain some results about the arithmetic structure of algebraic points over a variety defined over a function fields in one variable. In particular we will introduce the weak and strong Vojta conjectures and explain some consequences of them. We will expose some recent developments on the subject : Curves, Varieties with ample cotangent bundle, curves in positive characteirstic, hypersurfaces.... If there is time we will explain some ...[+]

14G40

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will explain some results about the arithmetic structure of algebraic points over a variety defined over a function fields in one variable. In particular we will introduce the weak and strong Vojta conjectures and explain some consequences of them. We will expose some recent developments on the subject : Curves, Varieties with ample cotangent bundle, curves in positive characteirstic, hypersurfaces.... If there is time we will explain some analogues over number fields.[-]
We will explain some results about the arithmetic structure of algebraic points over a variety defined over a function fields in one variable. In particular we will introduce the weak and strong Vojta conjectures and explain some consequences of them. We will expose some recent developments on the subject : Curves, Varieties with ample cotangent bundle, curves in positive characteirstic, hypersurfaces.... If there is time we will explain some ...[+]

14G40

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will explain some results about the arithmetic structure of algebraic points over a variety defined over a function fields in one variable. In particular we will introduce the weak and strong Vojta conjectures and explain some consequences of them. We will expose some recent developments on the subject : Curves, Varieties with ample cotangent bundle, curves in positive characteirstic, hypersurfaces.... If there is time we will explain some analogues over number fields.[-]
We will explain some results about the arithmetic structure of algebraic points over a variety defined over a function fields in one variable. In particular we will introduce the weak and strong Vojta conjectures and explain some consequences of them. We will expose some recent developments on the subject : Curves, Varieties with ample cotangent bundle, curves in positive characteirstic, hypersurfaces.... If there is time we will explain some ...[+]

14G40

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will explain some results about the arithmetic structure of algebraic points over a variety defined over a function fields in one variable. In particular we will introduce the weak and strong Vojta conjectures and explain some consequences of them. We will expose some recent developments on the subject : Curves, Varieties with ample cotangent bundle, curves in positive characteirstic, hypersurfaces.... If there is time we will explain some analogues over number fields.[-]
We will explain some results about the arithmetic structure of algebraic points over a variety defined over a function fields in one variable. In particular we will introduce the weak and strong Vojta conjectures and explain some consequences of them. We will expose some recent developments on the subject : Curves, Varieties with ample cotangent bundle, curves in positive characteirstic, hypersurfaces.... If there is time we will explain some ...[+]

14G40

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
As is well known, simultaneous rational approximations to the values of smooth functions of real variables involve counting and/or understanding the distribution of rational points lying near the manifold parameterised by these functions. I will discuss recent results in this area regarding lower bounds for the Hausdorff dimension of $\tau$-approximable values, where $\tau\geq \geq 1/n$ is the exponent of approximations. In particular, I will describe a very recent development for non-degenerate maps as well as a recently introduced simple technique based on the so-called Mass Transference Principle that surprisingly requires no conditions on the functions except them being $C^2$.[-]
As is well known, simultaneous rational approximations to the values of smooth functions of real variables involve counting and/or understanding the distribution of rational points lying near the manifold parameterised by these functions. I will discuss recent results in this area regarding lower bounds for the Hausdorff dimension of $\tau$-approximable values, where $\tau\geq \geq 1/n$ is the exponent of approximations. In particular, I will ...[+]

11J13 ; 11J83 ; 11K60

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
It goes back to Lagrange that a real quadratic irrational has always a periodic continued fraction. Starting from decades ago, several authors proposed different definitions of a $p$-adic continued fraction, and the definition depends on the chosen system of residues mod $p$. It turns out that the theory of p-adic continued fractions has many differences with respect to the real case; in particular, no analogue of Lagranges theorem holds, and the problem of deciding whether the continued fraction is periodic or not seemed to be not known until now. In recent work with F. Veneziano and U. Zannier we investigated the expansion of quadratic irrationals, for the $p$-adic continued fractions introduced by Ruban, giving an effective criterion to establish the possible periodicity of the expansion. This criterion, somewhat surprisingly, depends on the ‘real' value of the $p$-adic continued fraction.[-]
It goes back to Lagrange that a real quadratic irrational has always a periodic continued fraction. Starting from decades ago, several authors proposed different definitions of a $p$-adic continued fraction, and the definition depends on the chosen system of residues mod $p$. It turns out that the theory of p-adic continued fractions has many differences with respect to the real case; in particular, no analogue of Lagranges theorem holds, and ...[+]

11J70 ; 11D88 ; 11Y16

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Height pairings, torsion points, and dynamics - Krieger, Holly (Author of the conference) | CIRM H

Multi angle

We will present work in progress, joint with Hexi Ye, towards a conjecture of Bogomolov, Fu, and Tschinkel asserting uniform bounds for common torsion points of nonisomorphic elliptic curves. We introduce a general approach towards uniform unlikely intersection bounds based on an adelic height pairing, and discuss the utilization of this approach for uniform bounds on common preperiodic points of dynamical systems, including torsion points of elliptic curves.[-]
We will present work in progress, joint with Hexi Ye, towards a conjecture of Bogomolov, Fu, and Tschinkel asserting uniform bounds for common torsion points of nonisomorphic elliptic curves. We introduce a general approach towards uniform unlikely intersection bounds based on an adelic height pairing, and discuss the utilization of this approach for uniform bounds on common preperiodic points of dynamical systems, including torsion points of ...[+]

14G05 ; 11G50 ; 11G05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Regulators of elliptic curves - Pazuki, Fabien (Author of the conference) | CIRM H

Multi angle

In a recent collaboration with Pascal Autissier and Marc Hindry, we prove that up to isomorphisms, there are at most finitely many elliptic curves defined over a fixed number field, with Mordell-Weil rank and regulator bounded from above, and rank at least 4.

11G50 ; 14G40

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Semiclassical methods have shown to be very efficient to get quantitative description of metastability of Langevin dynamics. In this talk we try to explain the main ideas of this approach in both reversible and non-reversible cases.

35P15 ; 35P20 ; 82C31 ; 35Q84 ; 47A75 ; 81Q60

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A refinement of the abc conjecture - Stewart, Cameron L. (Author of the conference) | CIRM H

Post-edited

We shall discuss joint work with Robert and Tenenbaum on a proposed refinement of the well known abc conjecture.

11N25 ; 11Dxx ; 11N56

Bookmarks Report an error