Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A subgroup $H$ of an acylindrically hyperbolic groups $G$ is called geometrically dense if for every non-elementary acylindrical action of $G$ on a hyperbolic space, the limit sets of $G$ and $H$ coincide. We prove that for every ergodic measure preserving action of a countable acylindrically hyperbolic group $G$ on a Borel probability space, either the stabilizer of almost every point is geometrically dense in $G$, or the action is essentially almost free (i.e., the stabilizers are finite). Various corollaries and generalizations of this result will be discussed.
[-]
A subgroup $H$ of an acylindrically hyperbolic groups $G$ is called geometrically dense if for every non-elementary acylindrical action of $G$ on a hyperbolic space, the limit sets of $G$ and $H$ coincide. We prove that for every ergodic measure preserving action of a countable acylindrically hyperbolic group $G$ on a Borel probability space, either the stabilizer of almost every point is geometrically dense in $G$, or the action is essentially ...
[+]
20F67 ; 20F65
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
V
- 100 p.
Cote : 00028516
théorie des groupes géométriques # groupe hyperbolique # espace hyperbolique # inégalité isopérimétrique # fonction de Dehn # problème algorithmique # sous-groupe quasi-convexe
20F65 ; 20F05 ; 20F06 ; 20F10 ; 20F67 ; 20F69