Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
Given a smooth scheme $X$ over the ring of integers of a $p$-adic field, we introduce the notion of a relative Breuil-Kisin-Fargues module $M$ on $X$. Each such $M$ simultaneously encodes the data of a lisse étale sheaf, a module with flat connection, and a crystal, whose cohomologies are then intertwined by a relative form of the $A_{inf}$ cohomology introduced in "Integral $p$-adic Hodge theory" by Bhatt-M-Scholze. They are moreover closely related to other work in relative $p$-adic Hodge theory, notably Faltings small generalised representations and his relative Fontaine Lafaille theory. Joint with Takeshi Tsuji.
[-]
Given a smooth scheme $X$ over the ring of integers of a $p$-adic field, we introduce the notion of a relative Breuil-Kisin-Fargues module $M$ on $X$. Each such $M$ simultaneously encodes the data of a lisse étale sheaf, a module with flat connection, and a crystal, whose cohomologies are then intertwined by a relative form of the $A_{inf}$ cohomology introduced in "Integral $p$-adic Hodge theory" by Bhatt-M-Scholze. They are moreover closely ...
[+]
14F20 ; 14F30 ; 14F40 ; 14D10 ; 14G20 ; 14G22 ; 11G25
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Any finite-dimensional p-adic representation of the absolute Galois group of a $p$-adic local field with imperfect residue field is characterized by its arithmetic and geometric Sen operators defined by Sen-Brinon. We generalize their construction to the fundamental group of a $p$-adic affine variety with a semi-stable chart, and prove that the module of Sen operators is canonically defined, independently of the choice of the chart. When the representation comes from a $Q_{p}$-representation of a $p$-adic Lie group quotient of the fundamental group, we describe its Lie algebra action in terms of the Sen operators, which is a generalization of a result of Sen-Ohkubo. These Sen operators can be extended continuously to certain infinite-dimensional representations. As an application, we prove that the geometric Sen operators annihilate locally analytic vectors, generalizing a result of Pan.
[-]
Any finite-dimensional p-adic representation of the absolute Galois group of a $p$-adic local field with imperfect residue field is characterized by its arithmetic and geometric Sen operators defined by Sen-Brinon. We generalize their construction to the fundamental group of a $p$-adic affine variety with a semi-stable chart, and prove that the module of Sen operators is canonically defined, independently of the choice of the chart. When the ...
[+]
11F80 ; 14F35 ; 14F30