En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 37C30 14 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will discuss an approach to the statistical properties of two-dimensional dispersive billiards (mostly discrete-time) using transfer operators acting on anisotropic Banach spaces of distributions. The focus of this part will be our recent work with Mark Demers on the measure of maximal entropy but we will also survey previous results by Demers, Zhang, Liverani, etc on the SRB measure.

37D50 ; 37C30 ; 37B40

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will discuss an approach to the statistical properties of two-dimensional dispersive billiards (mostly discrete-time) using transfer operators acting on anisotropic Banach spaces of distributions. The focus of this part will be our recent work with Mark Demers on the measure of maximal entropy but we will also survey previous results by Demers, Zhang, Liverani, etc on the SRB measure.

37D50 ; 37C30 ; 37B40

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will discuss an approach to the statistical properties of two-dimensional dispersive billiards (mostly discrete-time) using transfer operators acting on anisotropic Banach spaces of distributions. The focus of this part will be our recent work with Mark Demers on the measure of maximal entropy but we will also survey previous results by Demers, Zhang, Liverani, etc on the SRB measure.

37D50 ; 37C30 ; 37B40

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Transfer operators for Anosov flows - lecture 1 - Tsuijii, Masato (Author of the conference) | CIRM H

Multi angle

We present a functional-analytic approach to the study of transfer operators for Anosov flows. To study transfer operators, a basic idea in semi-classical analysis suggests to look at the action of the flow on the cotangent bundle. Though this idea is simple and intuitive (as we will explain in the lectures), we need some framework to make it work. In the lectures, we present such a framework based on a wave-packet transform.

37D20 ; 37C30

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Transfer operators for Anosov flows - lecture 2 - Tsuijii, Masato (Author of the conference) | CIRM H

Multi angle

We present a functional-analytic approach to the study of transfer operators for Anosov flows. To study transfer operators, a basic idea in semi-classical analysis suggests to look at the action of the flow on the cotangent bundle. Though this idea is simple and intuitive (as we will explain in the lectures), we need some framework to make it work. In the lectures, we present such a framework based on a wave-packet transform.

37D20 ; 37C30

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Transfer operators for Anosov flows - lecture 3 - Tsuijii, Masato (Author of the conference) | CIRM H

Multi angle

We present a functional-analytic approach to the study of transfer operators for Anosov flows. To study transfer operators, a basic idea in semi-classical analysis suggests to look at the action of the flow on the cotangent bundle. Though this idea is simple and intuitive (as we will explain in the lectures), we need some framework to make it work. In the lectures, we present such a framework based on a wave-packet transform.

37D20 ; 37C30

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We discuss the distribution of the trace of a random matrix in the compact Lie group USp2g, with the normalized Haar measure. According to the generalized Sato-Tate conjecture, if A is an abelian variety of dimension g defined over the rationals, the sequence of traces of Frobenius in the successive reductions of A modulo primes appears to be equidistributed with respect to this distribution. If g = 2, we provide expressions for the characteristic function, the density, and the repartition function of this distribution in terms of higher transcendental functions, namely Legendre and Meijer functions.[-]
We discuss the distribution of the trace of a random matrix in the compact Lie group USp2g, with the normalized Haar measure. According to the generalized Sato-Tate conjecture, if A is an abelian variety of dimension g defined over the rationals, the sequence of traces of Frobenius in the successive reductions of A modulo primes appears to be equidistributed with respect to this distribution. If g = 2, we provide expressions for the cha...[+]

11G05 ; 11G10 ; 14G10 ; 37C30

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider the one-parameter families of transfer operators for geodesic flows on negatively curved manifolds. We show that the spectra of the generators have some "band structure" parallel to the imaginary axis. As a special case of "semi-classical" transfer operator, we see that the eigenvalues concentrate around the imaginary axis with some gap on the both sides.

37C30 ; 37D40 ; 53D25 ; 81Q50

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Hyperbolic (Anosov or Axiom A) flows have discrete Ruelle spectrum. For contact Anosov flows, e.g. geodesic flows, where a smooth contact one form is preserved, the trapped set is a smooth symplectic manifold, normally hyperbolic, and M. Tsujii, S. Nonnenmacher and M. Zworski, have given an estimate for the asymptotic spectral gap, i.e. that appears in the limit of high frequencies in the flow direction. We will propose a different approach that may improve this estimate. This will be presented on a simple toy model, partially expanding maps. Work with Tobias Weich.[-]
Hyperbolic (Anosov or Axiom A) flows have discrete Ruelle spectrum. For contact Anosov flows, e.g. geodesic flows, where a smooth contact one form is preserved, the trapped set is a smooth symplectic manifold, normally hyperbolic, and M. Tsujii, S. Nonnenmacher and M. Zworski, have given an estimate for the asymptotic spectral gap, i.e. that appears in the limit of high frequencies in the flow direction. We will propose a different approach that ...[+]

37C30 ; 37D20 ; 58J50 ; 34C28

Bookmarks Report an error