Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Many hydrodynamic instabilities take place near a solid boundary at high Reynolds number. This reflects into the mathematical theory of the classical Prandtl model for the boundary layer: it exhibits high frequency instabilities, limiting its well-posedness to infinite regularity (Gevrey) spaces. After reviewing shortly this fact, we will turn to the Triple Deck model, a refinement of the Prandtl system that is commonly accepted to be more stable. We will show that this is actually wrong, and that the recent result of analytic well-posedness obtained by Iyer and Vicol is more or less optimal. This is based on joint work with Helge Dietert.
[-]
Many hydrodynamic instabilities take place near a solid boundary at high Reynolds number. This reflects into the mathematical theory of the classical Prandtl model for the boundary layer: it exhibits high frequency instabilities, limiting its well-posedness to infinite regularity (Gevrey) spaces. After reviewing shortly this fact, we will turn to the Triple Deck model, a refinement of the Prandtl system that is commonly accepted to be more ...
[+]
35Q30 ; 35Q35 ; 76D10