Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
Given a smooth scheme $X$ over the ring of integers of a $p$-adic field, we introduce the notion of a relative Breuil-Kisin-Fargues module $M$ on $X$. Each such $M$ simultaneously encodes the data of a lisse étale sheaf, a module with flat connection, and a crystal, whose cohomologies are then intertwined by a relative form of the $A_{inf}$ cohomology introduced in "Integral $p$-adic Hodge theory" by Bhatt-M-Scholze. They are moreover closely related to other work in relative $p$-adic Hodge theory, notably Faltings small generalised representations and his relative Fontaine Lafaille theory. Joint with Takeshi Tsuji.
[-]
Given a smooth scheme $X$ over the ring of integers of a $p$-adic field, we introduce the notion of a relative Breuil-Kisin-Fargues module $M$ on $X$. Each such $M$ simultaneously encodes the data of a lisse étale sheaf, a module with flat connection, and a crystal, whose cohomologies are then intertwined by a relative form of the $A_{inf}$ cohomology introduced in "Integral $p$-adic Hodge theory" by Bhatt-M-Scholze. They are moreover closely ...
[+]
14F20 ; 14F30 ; 14F40 ; 14D10 ; 14G20 ; 14G22 ; 11G25