En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Zambotti, Lorenzo 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Bessel-like SPDEs - Zambotti, Lorenzo (Auteur de la conférence) | CIRM H

Multi angle

I will discuss integration by parts formulae on the law of the Bessel bridge of dimension less than $3$ and show how this allows to conjecture the form of an associated SPDE. The most relevant case is the dimension equal to $1$, which is expected to be the scaling limit of critical wetting models.

60H15 ; 60J55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A microlocal approach to renormalization in stochastic PDEs - Zambotti, Lorenzo (Auteur de la conférence) | CIRM H

Virtualconference

We present a novel framework for the study of a large class of non-linear stochastic PDEs, which is inspired by the algebraic approach to quantum field theory. The main merit is that, by realizing random fields within a suitable algebra of functional-valued distributions, we are able to use techniques proper of microlocal analysis which allow us to discuss renormalization and its associated freedom without resorting to any regularization scheme and to the subtraction of infinities. As an example of the effectiveness of the approach we apply it to the perturbative analysis of the stochastic $\Phi _{d}^{3}$ model.[-]
We present a novel framework for the study of a large class of non-linear stochastic PDEs, which is inspired by the algebraic approach to quantum field theory. The main merit is that, by realizing random fields within a suitable algebra of functional-valued distributions, we are able to use techniques proper of microlocal analysis which allow us to discuss renormalization and its associated freedom without resorting to any regularization scheme ...[+]

81T05 ; 60H17

Sélection Signaler une erreur