En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Semialgebraic Whitney partition of unity

Bookmarks Report an error
Multi angle
Authors : Valette, Anna (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : This talk is based on a common work with Wieslaw Pawlucki and Beata Kocel-Cynk. I will present a notion of $\mathrm{\wedge }_{p}$-regular partition of unity which can be seen as a semialgebraic counterpart of Whitney partition of unity. This enables us to obtain a semialgebraic (or more generally definable) version of Calder´on Zygmund theorem on regularization of the distance function. Some more consequences will also be given.

Keywords : semialgebraic functions; semialgebraic sets; Calderon-Zygmund theorem

MSC Codes :
14P20 - Nash functions and manifolds, See also {32C07, 58A07}
57R35 - Differentiable mappings

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 14/02/2025
    Conference Date : 27/01/2025
    Subseries : Research School
    arXiv category : Algebraic Geometry
    Mathematical Area(s) : Analysis and its Applications ; Algebraic & Complex Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 00:48:53
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2025-01_27_Valette.mp4

Information on the Event

Event Title : Logarithmic and non-archimedean methods in Singularity Theory - Thematic Month Week 1 / Méthodes logarithmiques et non-archimédiennes en théorie des singularités - Mois thématique semaine 1
Event Organizers : Fantini, Lorenzo ; Pełka, Tomasz ; Pichon, Anne ; Rond, Guillaume
Dates : 27/01/2025 - 31/01/2025
Event Year : 2025
Event URL : https://conferences.cirm-math.fr/3267.html

Citation Data

DOI : 10.24350/CIRM.V.20295003
Cite this video as: Valette, Anna (2025). Semialgebraic Whitney partition of unity. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20295003
URI : http://dx.doi.org/10.24350/CIRM.V.20295003

See Also

Bibliography

  • BOCHNAK, Jacek, COSTE, Michel, et ROY, Marie-Françoise. Real algebraic geometry. Springer Science & Business Media, 2013. -

  • CALDERÓN, Alberto Pedro et ZYGMUND, Antoni. Local properties of solutions of elliptic partial differential equations. Studia Mathematica 1961, vol 20 . p. 285-339. - https://bibliotekanauki.pl/articles/1387925.pdf

  • VAN DEN DRIES, Lou et MILLER, Chris. Geometric categories and o-minimal structures.Duke Math. J. Vol.84 n°, 1996.
    497–540 - https://doi.org/10.1215/S0012-7094-96-08416-1

  • EFROYMSON, Gustave A. The extension theorem for Nash functions. In: Colliot-Thélène, JL., Coste, M., Mahé, L., Roy, MF. (eds) Géométrie Algébrique Réelle et Formes Quadratiques. Lecture Notes in Mathematics, vol 959. Springer, Berlin, Heidelberg 1982 . p. 343-357. - https://doi.org/10.1007/BFb0062262

  • FISCHER, Andreas. Smooth functions in o-minimal structures. Advances in Mathematics, 2008, vol. 218, no 2, p. 496-514. - https://doi.org/10.1016/j.aim.2008.01.002

  • KOCEL-CYNK, Beata, PAWŁUCKI, Wiesław, et VALETTE, Anna. Approximation of singular semialgebraic sets by smooth ones with respect to the Hausdorff metric. Bulletin des Sciences Mathématiques, 2023, vol. 185, p. 103270. - http://dx.doi.org/10.1016/j.bulsci.2023.103270

  • KURDYKA, Krzysztof et PAWŁUCKI, Wiesław. Subanalytic version of Whitney's extension theorem. Studia Math, 1997, vol. 124, no 3, p. 269-280. - http://dx.doi.org/10.4064/sm-124-3-269-280

  • KURDYKA, Krzysztof et PAWŁUCKI, Wiesław. O-minimal version of Whitney's extension theorem. Studia Mathematica, 2014, vol. 1, no 224, p. 81-96. - https://dx.doi.org/10.4064/sm224-1-4

  • PAWŁUCKI, Wiesław. A linear extension operator for Whitney fields on closed o-minimal sets. In : Annales de l'institut Fourier. 2008. p. 383-404. - https://doi.org/10.5802/aif.2355

  • PAWŁUCKI, Wiesław. Lipschitz cell decomposition in o-minimal structures I. Illinois Journal of Mathematics, 2008, vol. 52, no 3, p. 1045-1063. - https://doi.org/10.1215/ijm/1254403731

  • PECKER, Daniel. On Efroymson's extension theorem for Nash functions. Journal of Pure and Applied Algebra, 1985, vol. 37, p. 193-203. - https://doi.org/10.1016/0022-4049(85)90097-0

  • SHIOTA, Masahiro. Approximation theorems for Nash mappings and Nash manifolds. Transactions of the American Mathematical Society, 1986, vol. 293, no 1, p. 319-337. - https://doi.org/10.2307/2000284

  • STEIN, Elias M. Singular integrals and differentiability properties of functions. Princeton university press, 1970. -

  • VALETTE, Anna et VALETTE, Guillaume. Approximations in globally subanalytic and Denjoy-Carleman classes. Advances in Mathematics, 2021, vol. 385, p. 107764. - http://dx.doi.org/10.1016/j.aim.2021.107764

  • SHIOTA, Masahiro et SHIOTA, Masahiro. Geometry of subanalytic and semialgebraic sets. Boston : Birkhäuser, 1997. - https://doi.org/10.1007/978-1-4612-2008-4

  • TOUGERON, Jean Claude. Ideaux de fonctions différentiables.Springer. 1972 - https://doi.org/10.1007/978-3-662-59320-2



Imagette Video

Bookmarks Report an error