En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Willmore stability and conformal rigidity of minimal surfaces in $\mathbb{S}^{n}$

Bookmarks Report an error
Multi angle
Authors : Kusner, Rob (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : A minimal surface $M$ in the round sphere $\mathbb{S}^{n}$ is critical for area, as well as for the Willmore bending energy $W=\int\int(1+H^{2})da$. Willmore stability of $M$ is equivalent to a gap between −2 and 0 in its area-Jacobi operator spectrum. We show the $W$-stability of $M$ persists in all higher dimensional spheres if and only if the Laplacian of $M$ has first eigenvalue 2. The square Clifford 2-torus in $\mathbb{S}^{3}$ and the equilateral minimal 2-torus in $\mathbb{S}^{5}$ have this spectral gap, and each is embedded by first eigenfunctions, so both are "persistently” $W$-stable. On the other hand, we discovered the equilateral torus has nontrivial third variation (with vanishing second variation) of $W$, and thus is not a $W$-minimizer (though it is the $W$-minimizer if we fix the conformal type!). This is evidence the Willmore Conjecture holds in every codimension. Another result concerns higher genus minimal surfaces (such as those constructed by Lawson and those by Karcher-Pinkall-Sterling) in $\mathbb{S}^{3}$ which Choe-Soret showed are embedded by first eigenfunctions: we show their first eigenspaces are always 4-dimensional, and that this implies each is (up to Möbius transformations of $\mathbb{S}^{n}$) the unique $W$-minimizer in its conformal class. (Some analogous results hold for free boundary minimal surfaces in the unit ball $\mathbb{B}^{n}$....). This is joint work with Peng Wang.

Keywords : minimal surfaces; Willmore problem

MSC Codes :
53C42 - Immersions (minimal, prescribed curvature, tight, etc.), See also {49Q05, 49Q10, 53A10, 57R40, 57R42}

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 18/06/2019
    Conference Date : 30/05/2019
    Subseries : Research talks
    arXiv category : Differential Geometry
    Mathematical Area(s) : Geometry ; PDE
    Format : MP4 (.mp4) - HD
    Video Time : 01:10:32
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-05-30_Kusner.mp4

Information on the Event

Event Title : Problèmes variationnels et géométrie des sous-variétés / Variational Problems and the Geometry of Submanifolds
Event Organizers : Alias, Luis J. ; Loubeau, Eric ; Mazet, Laurent ; Montaldo, Stefano ; Soret, Marc ; Ville, Marina
Dates : 27/05/2019 - 31/05/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/1936.html

Citation Data

DOI : 10.24350/CIRM.V.19532803
Cite this video as: Kusner, Rob (2019). Willmore stability and conformal rigidity of minimal surfaces in $\mathbb{S}^{n}$. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19532803
URI : http://dx.doi.org/10.24350/CIRM.V.19532803

See Also

Bibliography



Bookmarks Report an error