Authors : Viennot, Xavier (Author of the conference)
CIRM (Publisher )
Abstract :
Recently several papers appears on ArXiv, on various topics apparently unrelated such as: spin system observable (T. Helmuth, A. Shapira), Fibonacci polynomials (A. Garsia, G. Ganzberger), fully commutative elements in Coxeter groups (E. Bagno, R. Biagioli, F. Jouhet, Y. Roichman), reciprocity theorem for bounded Dyck paths (J. Cigler, C. Krattenthaler), uniform random spanning tree in graphs (L. Fredes, J.-F. Marckert). In each of these papers the theory of heaps of pieces plays a central role. We propose a walk relating these topics, starting from the well-known loop erased random walk model (LERW), going around the classical bijection between lattice paths and heaps of cycles, and a second less known bijection due to T. Helmuth between lattice paths and heaps of oriented loops, in relation with the Ising model in physics, totally non-backtracking paths and zeta function in graphs. Dyck paths, these two bijections involve heaps of dimers and heaps of segments. A duality between these two kinds of heaps appears in some of the above papers, in relation with orthogonal polynomials and fully commutative elements. If time allows we will finish this excursion with the correspondence between heaps of segments, staircase polygons and q-Bessel functions.
Keywords : lattice paths; heaps of pieces; commutation monoids; combinatorial reciprocity
MSC Codes :
01A55
- 19th century
05A15
- Exact enumeration problems, generating functions
11B39
- Fibonacci and Lucas numbers and polynomials and generalizations
20F55
- Coxeter groups
82B20
- Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs
Film maker : Hennenfent, Guillaume
Language : English
Available date : 02/08/2021
Conference Date : 25/06/2021
Subseries : Research talks
arXiv category : Combinatorics ; History and Overview ; Group Theory ; Condensed Matter
Mathematical Area(s) : Combinatorics
Format : MP4 (.mp4) - HD
Video Time : 01:13:18
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2021-06-25_Viennot.mp4
|
Event Title : Lattice Paths, Combinatorics and Interactions / Marches aléatoires, combinatoire et interactions Event Organizers : Banderier, Cyril ; Dousse, Jehanne ; Duchi, Enrica ; Krattenthaler, Christian ; Wallner, Michael Dates : 21/06/2021 - 25/06/2021
Event Year : 2021
Event URL : https://conferences.cirm-math.fr/2324.html
DOI : 10.24350/CIRM.V.19770303
Cite this video as:
Viennot, Xavier (2021). Lattice paths and heaps. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19770303
URI : http://dx.doi.org/10.24350/CIRM.V.19770303
|
See Also
Bibliography
- X. Viennot, The Art of Bijective Combinatorics, Part II, Commutation and heaps of pieces with interactions in Physics, Mathematics and Computer Science, IMSc, Chennai, (2017). (video-book) Chapters: 2b, 3b, 5b, 6a, 7a - http://www.viennot.org/abjc2.html
- J. Cigler and C. Krattenthaler, Bounded Dyck paths, bounded alternating sequences, orthogonal polynomials, and reciprocity, (70 pp) arXiv:2012.03878 Dec 2020 - https://arxiv.org/abs/2012.03878