En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Lattice paths and heaps

Sélection Signaler une erreur
Multi angle
Auteurs : Viennot, Xavier (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : Recently several papers appears on ArXiv, on various topics apparently unrelated such as: spin system observable (T. Helmuth, A. Shapira), Fibonacci polynomials (A. Garsia, G. Ganzberger), fully commutative elements in Coxeter groups (E. Bagno, R. Biagioli, F. Jouhet, Y. Roichman), reciprocity theorem for bounded Dyck paths (J. Cigler, C. Krattenthaler), uniform random spanning tree in graphs (L. Fredes, J.-F. Marckert). In each of these papers the theory of heaps of pieces plays a central role. We propose a walk relating these topics, starting from the well-known loop erased random walk model (LERW), going around the classical bijection between lattice paths and heaps of cycles, and a second less known bijection due to T. Helmuth between lattice paths and heaps of oriented loops, in relation with the Ising model in physics, totally non-backtracking paths and zeta function in graphs. Dyck paths, these two bijections involve heaps of dimers and heaps of segments. A duality between these two kinds of heaps appears in some of the above papers, in relation with orthogonal polynomials and fully commutative elements. If time allows we will finish this excursion with the correspondence between heaps of segments, staircase polygons and q-Bessel functions.

Mots-Clés : lattice paths; heaps of pieces; commutation monoids; combinatorial reciprocity

Codes MSC :
01A55 - 19th century
05A15 - Exact enumeration problems, generating functions
11B39 - Fibonacci and Lucas numbers and polynomials and generalizations
20F55 - Coxeter groups
82B20 - Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 02/08/2021
    Date de Captation : 25/06/2021
    Sous Collection : Research talks
    Catégorie arXiv : Combinatorics ; History and Overview ; Group Theory ; Condensed Matter
    Domaine(s) : Combinatoires
    Format : MP4 (.mp4) - HD
    Durée : 01:13:18
    Audience : Chercheurs
    Download : https://videos.cirm-math.fr/2021-06-25_Viennot.mp4

Informations sur la Rencontre

Nom de la Rencontre : Lattice Paths, Combinatorics and Interactions / Marches aléatoires, combinatoire et interactions
Organisateurs de la Rencontre : Banderier, Cyril ; Dousse, Jehanne ; Duchi, Enrica ; Krattenthaler, Christian ; Wallner, Michael
Dates : 21/06/2021 - 25/06/2021
Année de la rencontre : 2021
URL de la Rencontre : https://conferences.cirm-math.fr/2324.html

Données de citation

DOI : 10.24350/CIRM.V.19770303
Citer cette vidéo: Viennot, Xavier (2021). Lattice paths and heaps. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19770303
URI : http://dx.doi.org/10.24350/CIRM.V.19770303

Voir Aussi

Bibliographie

  • X. Viennot, The Art of Bijective Combinatorics, Part II, Commutation and heaps of pieces with interactions in Physics, Mathematics and Computer Science, IMSc, Chennai, (2017). (video-book) Chapters: 2b, 3b, 5b, 6a, 7a - http://www.viennot.org/abjc2.html

  • J. Cigler and C. Krattenthaler, Bounded Dyck paths, bounded alternating sequences, orthogonal polynomials, and reciprocity, (70 pp) arXiv:2012.03878 Dec 2020 - https://arxiv.org/abs/2012.03878



Sélection Signaler une erreur