En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Functional convex order for stochastic processes: a constructive (and simulable) approach

Bookmarks Report an error
Multi angle
Authors : Pagès, Gilles (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : After a few reminders on the convex order $\leq _{cv}$ between two random vectors $U$ and $V$ defined by $U\leq _{cv}V$ if $\mathbb{E}f(U)\leq \mathbb{E}f(V)$ for every convex function $f:\mathbb{R}^{d}\rightarrow \mathbb{R}$, (with some variants like monotonic convex order) and their first applications in finance, we will explain how to extend this order in a functional way to stochastic processes, in particular to diffusions (Brownian, with jumps, McKean Vlasov type), even to non-Markovian processes, such as the solutions of Volterra equations with singular kernels like those appearing in rough volatility modeling in Finance. We systematically establish our comparison results by an approximation procedure of Euler scheme type, generally simulable. Thus, among other virtues, this approach makes it possible in finance to ensure that the prices of derivative products computed by simulation cannot give rise to arbitrages by lack of convexity. As a by-product we will also establish the convexity of functionals $x\to \mathbb{E}F(X^{x})$ of such stochastic processes $X^{x}$ when $F$ is convex and $x$ is the starting value of $X^{x}$.
(includes some joint works with B. Jourdain and Y. Liu).

MSC Codes :

Additional resources :
https://www.cirm-math.fr/RepOrga/2390/Slides/Gilles_Pages.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 27/09/2023
    Conference Date : 07/09/2023
    Subseries : Research talks
    arXiv category : Probability
    Mathematical Area(s) : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:45:32
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-09-07_Pages.mp4

Information on the Event

Event Title : A Random Walk in the Land of Stochastic Analysis and Numerical Probability / Une marche aléatoire dans l'analyse stochastique et les probabilités numériques
Event Organizers : Champagnat, Nicolas ; Pagès, Gilles ; Tanré, Etienne ; Tomašević, Milica
Dates : 04/09/2023 - 08/09/2023
Event Year : 2023
Event URL : https://conferences.cirm-math.fr/2390.html

Citation Data

DOI : 10.24350/CIRM.V.20088603
Cite this video as: Pagès, Gilles (2023). Functional convex order for stochastic processes: a constructive (and simulable) approach. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20088603
URI : http://dx.doi.org/10.24350/CIRM.V.20088603

See Also

Bibliography



Imagette Video

Bookmarks Report an error