Auteurs : ... (Auteur de la Conférence)
... (Editeur )
Résumé :
We consider a stochastic model for the evolution of a discrete population structured by a trait taking finitely many values on a grid of [0, 1], with mutation and selection. We study of the dynamics of the population in logarithm size and time scales, under a large population assumption. In the first part of the talk, individual mutations are rare but the global mutation rate tends to infinity. Then negligible sub-populations may have a strong contribution to evolution. The traits can also be horizontally transferred, leading to a trade-off between natural evolution to higher birth rates and transfer which drives the population towards lower birth rates. We prove that the stochastic discrete exponent process converges to a piecewise affine continuous function, which can be described along successive phases determined by dominant traits. In the second part of the talk, the individual mutations are small but not rare, we don't have any transfer and we assume the grid mesh for the trait values becoming smaller and smaller. We establish that under our rescaling, the stochastic discrete exponent process converges to the viscosity solution of a Hamilton-Jacobi equation, filling the gap between individual-based evolutionary models and Hamilton-Jacobi equations.
Joint works with N. Champagnat and V.C. Tran, and S. Mirrahimi for the second part.
Keywords : branching processes; asymptotic behavior; biological modeling
Codes MSC :
60J85
- Applications of branching processes
92D25
- Population dynamics (general)
35Q92
- PDEs in connection with biology and other natural sciences
Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2390/Slides/Sylvie_Meleard.pdf
|
Informations sur la Rencontre
Nom de la rencontre : A Random Walk in the Land of Stochastic Analysis and Numerical Probability / Une marche aléatoire dans l'analyse stochastique et les probabilités numériques Dates : 04/09/2023 - 08/09/2023
Année de la rencontre : 2023
URL Congrès : https://conferences.cirm-math.fr/2390.html
DOI : 10.24350/CIRM.V.20087803
Citer cette vidéo:
(2023). Exponent dynamics for branching processes. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20087803
URI : http://dx.doi.org/10.24350/CIRM.V.20087803
|
Voir aussi
Bibliographie