En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Set-valued risk measures of non-convex portfolios

Bookmarks Report an error
Multi angle
Authors : Molchanov, Ilya (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Non-convex random sets of admissible positions naturally arise in the setting of fixed transaction costs or when only a finite range of possible transactions is considered. The talk defines set-valued risk measures in such cases and explores the situations when they return convex result, namely, when Lyapunov's theorem applies. The case of fixed transaction costs is analysed in greater details.
Joint work with Andreas Haier (FINMA, Switzerland).

MSC Codes :
91G10 - Portfolio theory
91G70 - Statistical methods in mathematical finance, econometrics

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 18/09/2018
    Conference Date : 05/09/2018
    Subseries : Research talks
    arXiv category : Risk Management ; Probability ; Mathematical Finance
    Mathematical Area(s) : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:37:43
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2018-09-05_Molchanov.mp4

Information on the Event

Event Title : Innovative Research in Mathematical Finance / Recherche innovante en mathématiques financières
Event Organizers : Callegaro, Giorgia ; Jeanblanc, Monique ; Lépinette, Emmanuel ; Molchanov, Ilya ; Schweizer, Martin ; Touzi, Nizar
Dates : 03/09/2018 - 07/09/2018
Event Year : 2018
Event URL : https://conferences.cirm-math.fr/1816.html

Citation Data

DOI : 10.24350/CIRM.V.19445003
Cite this video as: Molchanov, Ilya (2018). Set-valued risk measures of non-convex portfolios. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19445003
URI : http://dx.doi.org/10.24350/CIRM.V.19445003

See Also

Bibliography



Bookmarks Report an error